引言
在人工智能领域,大模型技术正逐渐成为推动行业进步的关键力量。随着技术的发展,大模型不仅在学术界引起了广泛的关注,也在产业界展现出巨大的应用潜力。然而,如何将这些强大的模型有效地应用到实际产业中,仍然是一个值得深入探讨的问题。在2024 Inclusion·外滩大会上,香港科技大学校董会主席、美国国家工程院外籍院士沈向洋分享了他对AI大模型产业落地的深刻见解。以下是沈院士关于AI大模型落地的八大思考,这些思考不仅为业界提供了宝贵的指导,也为我们理解AI技术的未来趋势提供了重要的视角。
一、算力是门槛
沈向洋院士指出,算力是大模型和深度学习不可或缺的基础。随着模型规模的不断扩大,所需的算力也在急剧增长。从2010年开始,大模型所需算力以每年4倍的速度增长,这一趋势要求计算机芯片行业的发展必须从传统的摩尔定律转变为黄氏定律,即GPU推动AI算力实现逐年翻倍。沈院士强调,算力的获取和优化将是未来大模型发展的关键。
二、关于数据的数据
数据是AI模型的“燃料”,对于大模型而言,数据的数量、质量和多样性直接关系到模型的准确性和性能。沈院士提到,随着模型规模的增长,所需的训练数据量也在急剧增加。例如,GPT3的训练数据量为2个T,而GPT5可能达到200个T。未来模型训练需要更多、更高质量的数据,这要求我们思考如何更有效地挖掘和利用数据资源。
三、大模型的下一章
沈院士认为,大模型产业的未来将从大语言模型发展到多模态模型,最终迈向世界模型。技术发展将朝着理解和生成统一的方向发展,这将推动AI技术在更多领域的应用和创新。
四、大模型横扫千行百业
大模型可分为通用大模型、行业大模型、企业大模型和个人大模型。沈院士指出,不同规模的模型对算力有不同的需求,而行业大模型目前占绝大多数。这表明,大模型技术正在逐渐渗透到各个行业中,推动产业的智能化升级。
五、AI Agent——从愿景到落地
AI Agent将改变人机交互方式,并可能颠覆软件行业。沈院士认为,AI Agent的发展需要深刻理解模型的能力,并构建AI深度参与的工作流程。这不仅涉及到技术层面的创新,也涉及到对工作流程和用户体验的重新设计。
六、要重视AI的治理
随着AI的发展,安全治理成为重要议题。沈院士提出,主权人工智能的发展需要主权云的支持。这意味着,在全球范围内,各国需要建立符合自身需求和价值观的AI治理体系,以确保AI技术的健康发展。
七、重新思考人机关系
沈院士提出,应该重新思考人机之间的关系,强调智能增强(IA)以人为本的AI发展路径,聚焦于提升人类能力。这要求我们在设计和应用AI技术时,始终以人的需求和利益为出发点。
八、智能的本质
尽管GPT等模型发展迅速,但人们对智能的理解仍然有限。沈院士认为,智能的本质是神经网络与符号系统的结合,深度学习需要更多的可解释性和鲁棒性。这提示我们,在追求技术进步的同时,也需要深入探索智能的本质,以实现更安全、更可靠的AI应用。
沈向洋院士的这八大思考为我们提供了一个全面而深入的视角,帮助我们理解AI大模型在产业落地过程中面临的挑战和机遇。随着技术的不断进步,我们有理由相信,AI大模型将在未来的产业发展中发挥越来越重要的作用。同时,我们也需要不断探索和创新,以确保AI技术的健康、可持续发展。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓