Ollama和llama.cpp选型指南: 以DeepSeek-R1 32B 大模型部署实践为例

1.背景

Ollama和llama.cpp都是比较常见的本地部署大模型的工具,借助他们普通的笔记本也可以跑大模型。 Ollama和llama.cpp名字里面都带了个llama容易造成选择困难。本文希望能借助一个实际的例子,帮助你快速做出选择。

先说结论:如果只是本地部署不考虑性能的话闭眼选Ollama,如果要做"极致优化性能为王"就选llama.cpp.

后文会分别用Ollama和llama.cpp部署DeepSeek-R1 32B的实践说明如何得出这个结论的。

2.Ollama和llama.cpp的关系

Ollama和llama.cpp里面都带了个llama,就是我们熟悉的Meta开源的llama模型。 起初Ollama和llama.cpp都是用来服务llama的, 后来就独立发展成了两个独立的软件了, 他们都有自己的社区。 

这里想重点说明的是, Ollama用llama.cpp作为底层实现模型推理的。这一点可以从Ollama的源码中得到答案:

Ollama代码的子目录llama里面就是包含了llama.cpp的代码, 并且通过llama.go文件将c++的接口导出到golang空间使用了。因此, 从源码的角度就可以认为llama.cpp就是Ollama的底层。

3.评测Ollama和llama.cpp

llama.cpp推荐的模型格式是GGUF, 为了公平让Ollama也使用同一个GGUF的模型。 我这里实验使用的是:DeepSeek-R1-Distill-Qwen-32B-Q5\_K\_M.gguf 模型。

3.1 Ollama部署DeepSeek-R1 32B

Ollama默认是不支持GGUF格式的,需要用Modelfile转换以下。步骤如下:
  • 创建一个名为deepseek-r1-32b.gguf文件, 内容如下:
FROM ./bartowski/DeepSeek-R1-Distill-Qwen-32B-Q5_K_M.gguf
  • 执行如下命令:
ollama create my-deepseek-r1-32b-gguf -f .\deepseek-r1-32b.gguf

就可以DeepSeek-R1 32B的GGUF模型导入到Ollama使用了

  • 执行命令启动该模型:
ollama run my-deepseek-r1-32b-gguf:latest

这时可以正常加载了, 通过ollama ps命令可以看到进程信息如下:

NAME                              ID              SIZE     PROCESSOR          UNTIL``my-deepseek-r1-32b-gguf:latest    ad9f11c41b7a    25 GB    87%/13% CPU/GPU    3 minutes from now

可以看到,整个模型有25G, 87%加载到了CPU内存空间,13%加载到了GPU空间。实际使用发现推理是很慢的,但是还是可以用的。

3.2 llama.cpp部署DeepSeek-R1 32B

我用的是gitbash,因此llama.cpp的安装参考的是 参考:

https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md#git-bash-mingw64

你也可以根据自己的情况选择正确的参考内容进行安装。安装完后,用如下命令执行:

build/bin/Release/llama-cli -m "/path/to/DeepSeek-R1-Distill-Qwen-32B-Q5_K_M.gguf" -ngl 100 -c 16384 -t 10 -n -2 -cnv

结果如下:

ggml_vulkan: Device memory allocation of size 1025355776 failed.` 
`ggml_vulkan: vk::Device::allocateMemory: ErrorOutOfDeviceMemory llama_model_load: error loading model: unable to allocate Vulkan0 buffer llama_model_load_from_file_impl: failed to load model common_init_from_params: failed to load model  'D:/llm/Model/bartowski/DeepSeek-R1-Distill-Qwen-32B-Q5_K_M.gguf' main: error: unable to load model`
`   

直接就报错了。

4.为什么llama.cpp部署不了

到这里,相信你知道怎么选型了。

不过,既然我们已经知道了llama.cpp是Ollama的底层,那为什么llama.cpp的表现反而不如Ollama呢?这个就要说到Ollama自己做的一个优化了, 也就是llama.cpp的ngl参数。用llama.cpp部署的时候ngl参数是写死的,而Ollama则是自己根据模型文件动态计算的ngl参数。

ngl参数的意思是将多少层加载到GPU去,我笔记本的GPU是4G显存,肯定不能将25G的DeepSeek加载进去的。因此llama.cpp的-ngl 100的用法肯定是不对的(100层基本就是全加载到GPU了),但是对于只有命令行的llama.cpp你也不好评估出-ngl应该取多少才能成功部署。

那Ollama是怎么做的呢?答案在Ollama的源码memory.go里面。这个文件里面的如下函数实现了根据模型计算ngl值的功能:

// Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size``// The GPUs provided must all be the same Library``func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []string, opts api.Options) MemoryEstimate {`    `// Graph size for a partial offload, applies to all GPUs`    `var graphPartialOffload uint64`    `// Graph size when all layers are offloaded, applies to all GPUs`    `var graphFullOffload uint64`    `// Final graph offload once we know full or partial`    `var graphOffload uint64`    `...

限于篇幅我就没有完整列出这个代码了,感兴趣的可以自己看下。正是这个函数让Ollama动态的计算了ngl的值,从而做出了“87%加载到了CPU内存空间,13%加载到了GPU空间”的动作,最终成功部署DeepSeek-R1 32B的模型。 实话实说, 普通的笔记本能部署32B的模型真的是太强了,出乎意料。

5.效果

同样还是让它做前几天王毅外长交给DeepSeek的任务:翻译“他强任他强,清风拂山岗;他横任他横,明月照大江”。

结果有点奇怪, 虽然也给出了部分翻译, 但是它理解错了任务。可能和资源首先Ollama做了其他的什么参数优化吧。如果你有更好的想法,欢迎分享。

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### 解决基于 llama.cpp 本地化部署 DeepSeek-R1 模型时缺少上传附件功能的问题 为了使 Windows 7 用户能够成功部署并利用 DeepSeek-R1 模型,教程已经针对该环境进行了特定调整[^1]。然而,在实际应用过程中遇到了缺乏文件上传能力这一挑战。 #### 文件上传机制分析 通常情况下,Llama.cpp 并不自带图形界面或直接支持文件上传的功能。这是因为 Llama.cpp 主要专注于提供推理服务而非构建完整的应用程序框架。因此,当需要实现文件上传特性时,则需额外集成其他组件来补充此功能。 对于希望增加文件上传特性的用户来说,可以考虑采用以下几种方法: - **通过 Web 接口间接处理** 构建一个简单的 HTTP/HTTPS 服务器作为前端接口,允许用户提交文件到指定位置。Python 的 Flask 或 FastAPI 是两个轻量级的选择,易于配置且能快速搭建起所需的服务端逻辑。 ```python import os from flask import Flask, request, send_from_directory app = Flask(__name__) UPLOAD_FOLDER = './uploads' if not os.path.exists(UPLOAD_FOLDER): os.makedirs(UPLOAD_FOLDER) @app.route('/upload', methods=['POST']) def upload_file(): if 'file' not in request.files: return "No file part", 400 file = request.files['file'] if file.filename == '': return "No selected file", 400 filename = secure_filename(file.filename) filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename) file.save(filepath) # 这里可以根据需求调用 llm 处理函数 process_llm_with_uploaded_file(filepath) return f"File {filename} has been uploaded successfully.", 200 def process_llm_with_uploaded_file(path_to_file): pass # 实现具体的LLM处理流程 if __name__ == "__main__": app.run(debug=True) ``` - **命令行参数传递** 如果应用场景较为简单,也可以简化设计思路——即让用户先手动将待处理的数据放置于预设目录下,再启动 Llama.cpp 应用程序并通过命令行参数告知其输入路径。这种方式虽然不够直观友好,但对于某些场景可能是最简便有效的解决方案之一。 - **第三方库辅助开发** 利用 Python 中诸如 `streamlit` 等可视化工具包创建交互式的 GUI 页面,不仅可以让整个过程更加人性化,同时也更容易满足不同层次用户的操作习惯。Streamlit 提供了便捷的方式用于展示模型预测结果以及接收来自用户的反馈信息。 综上所述,尽管原生的 Llama.cpp 不具备内置的文件管理能力,但借助外部技术开源项目完全可以克服这个障碍,并为用户提供满意的体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值