LangChain 是一个功能强大的大模型应用工具, 基于它的模块化结构,我们可以方便地生成各种功能的应用程序。本篇手把手教大家如何安装和使用LangChain + Ollama。有意于用大模型搭建本地对话系统或者AI Agent 的同学可以好好体验一下,以下操作基于Linux系统,用Window系统的同学也可参考。
0****1
安装Ollama+llama3.1:8b
安装比较简单,根据官网指引,在终端中输入以下指令:
1. curl -fsSL https://ollama.com/install.sh | sh``2. ollama pull llama3.1:8b
02
安装LangChain
1. langchain 需要使用python 编写程序,记得要先安装python3
2. 建议先建立python 虚拟环境,在虚拟环境中执行,可以避免各种软件包版本依赖问题。
我们在home文件夹中建立 lanchain_1 的文件夹,作为虚拟文件夹,在终端中执行:
python3 -m venv lanchain_1``source lanchain/bin/activate
见上图,虚拟环境的文件夹名称表示为:
(lanchain_1)$xxx@xxx:~$
见上图,接着在虚拟环境中安装 langchain
pip install langchain
3. 我们本次运行的python程序需要langchain_community模块,继续在虚拟环境中安装
pip install langchain_community
03
执行LangChain代码
进入虚拟环境后,用文本编辑器把以下代码编成文件,如:langchain_1.py 。
# 导入必要的模块和类``from langchain_community.llms import Ollama # 导入Ollama类,这是一个假设的语言模型接口``from langchain_core.prompts import ChatPromptTemplate # 导入ChatPromptTemplate,用于构建聊天提示``from langchain_core.output_parsers import StrOutputParser # 导入StrOutputParser,用于解析输出为字符串`` `` ``# 创建一个字符串输出解析器实例``output_parser = StrOutputParser()`` `` ``# 初始化Ollama模型,指定模型版本和大小``llm = Ollama(model="llama3.1:8b")`` `` ``# 创建一个聊天提示模板,用于构建输入到模型的提示``prompt = ChatPromptTemplate.from_messages([` `("system", "Tell me about virtual machines."), # 系统消息,设定模型的角色` `("user", "{input}") # 用户消息,占位符用于插入实际的用户输入``])`` `` ``# 构建处理链,从接收输入到获取输出``chain = prompt | llm | output_parser`` `` ``# 执行处理链,传入用户的问题,并打印输出结果``print(chain.invoke({"input": "how can langsmith help with testing?"}))
这段代码的主要功能是问llama3.1:8b模型一个介绍虚拟机的问题“Tell me about virtual machines.”,然后显示大模型生成的输出内容。它首先定义了一个本地部署的语言模型(`Ollama`),然后创建了一个聊天提示模板(`ChatPromptTemplate`),最后通过一个字符串输出解析器(`StrOutputParser`)来获取模型的输出。
执行:
python3 langchain_1.py
04
总结
这段代码不难理解,我们问了llama3.1 一个问题,并得到了输出答案,如果你能看到输出结果,那么恭喜你,LangChain已经可以在你的电脑正常运行了,而且你已经学会了如何用它去创建一个基于大模型的应用,当然你可以继续深入学习LangChain,实现更多更复杂的功能,比如可以创建一个前端页面,用浏览器打开后,和本地大模型进行对话,并加入自有知识库文件,创建AI Agent等等,更多的langchain功能等你来发掘,是不是很有意思呢?
零基础如何学习大模型 AI
领取方式在文末
为什么要学习大模型?
学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。
大模型典型应用场景
①AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
②AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
③AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
④AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。
⑤AI+零售:智能推荐系统和库存管理优化了用户体验和运营成本。AI可以分析用户行为,提供个性化商品推荐,同时优化库存,减少浪费。
⑥AI+交通:自动驾驶和智能交通管理提升了交通安全和效率。AI技术可以实现车辆自动驾驶,并优化交通信号控制,减少拥堵。
…
这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。
学习资料领取
如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
如果二维码失效,可以点击下方链接,一样的哦
【CSDN大礼包】最新AI大模型资源包,这里全都有!无偿分享!!!
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~