在两周内系统学习大语言模型(LLM, Large Language Models),需要明确目标和计划,并结合适当的硬件支持。以下是一个详细的学习计划,包括基础知识、进阶内容和实战应用,同时提供计算机设备选型建议。
学习目标
-
掌握 LLM 的基本原理和架构 :理解 Transformer 模型、GPT、BERT 等架构。
-
熟悉 LLM 的训练与推理流程 :学习模型预训练、微调、推理的过程。
-
了解 LLM 在不同领域的应用 :如文本生成、问答系统、对话机器人等。
-
实现一个基础的 LLM 项目 :从零开始微调一个小型 LLM,并进行推理测试。
学习计划概述
时间段 | 学习内容 | 实践任务 |
---|---|---|
第 1-2 天 | Transformer 和 LLM 基础 | 理解 Transformer 结构,阅读 GPT 和 BERT 的论文 |
第 3-4 天 | 深入 LLM 架构和模型训练 | 搭建环境,实验微调 BERT 或 GPT-2 |
第 5-6 天 | 模型优化与推理加速 | 使用量化、蒸馏等方法优化模型性能 |
第 7-8 天 | LLM 在 NLP 中的应用 | 实现文本生成、问答系统、情感分析等任务 |
第 9-10 天 | 高效模型微调与大模型部署 | 使用 LoRA、PEFT 等微调方法;了解部署技术 |
第 11-12 天 | 实战项目:微调与测试 | 微调一个小型 GPT 模型,并测试推理效果 |
第 13-14 天 | 总结与复习 | 整理笔记,完成报告和项目展示 |
详细学习内容和资源
第一阶段:基础知识与理论学习(1-4 天)
- Transformer 模型
论文:Attention Is All You Need https://arxiv.org/abs/1706.03762
学习内容:阅读《Attention Is All You Need》论文,理解 Attention 机制。
参考资源:
-
LLM 架构
-
学习 GPT、BERT、RoBERTa、T5 等不同 LLM 架构的特点和适用场景。
-
阅读 GPT 系列(GPT-1, GPT-2, GPT-3)的演变过程。
第二阶段:模型训练与推理(5-8 天)
-
环境搭建
-
安装 PyTorch 或 TensorFlow,熟悉 Hugging Face 的
transformers
库。 -
模型微调
-
使用 Hugging Face
transformers
库,微调 BERT 或 GPT-2 模型。 -
任务示例:在文本分类任务(如 IMDB 影评分类)上进行微调。
-
优化与推理加速
-
学习模型量化(Quantization)、知识蒸馏(Distillation)、模型剪枝(Pruning)。
-
使用
ONNX
或TensorRT
优化推理性能。
第三阶段:实战应用与项目开发(9-14 天)
-
NLP 应用
-
实现文本生成、命名实体识别(NER)、情感分析等任务。
-
示例项目:构建一个简单的对话机器人。
-
高效微调方法
-
使用 LoRA(Low-Rank Adaptation)进行参数高效微调。
-
使用 PEFT(Parameter-Efficient Fine-Tuning)方法提升微调效率。
-
模型部署
-
学习使用 FastAPI 部署 LLM 服务,并使用 Docker 容器化模型。
计算机设备选型建议
考虑到 LLM 的训练与推理需求,需要具备较高计算性能的设备,尤其是 GPU 支持。
1. 桌面工作站配置
适合需要本地训练和测试的场景。
配件 | 建议配置 |
---|---|
CPU | AMD Ryzen 9 7900X / Intel i9-13900K |
GPU | NVIDIA RTX 4090 / RTX 4080(24GB 显存更好) |
内存 | 64GB DDR5 |
存储 | NVMe SSD 2TB |
操作系统 | Ubuntu 22.04 / Windows 11 |
2. 云服务器配置
适合需要大规模模型训练和部署的场景。
-
AWS EC2 / GCP / Azure
-
使用 NVIDIA A100 或 V100 GPU 实例。
-
内存配置至少 64GB,GPU 显存建议 40GB 以上。
-
使用 Docker 管理环境,并结合 CUDA、cuDNN 进行 GPU 加速。
3. 本地轻量笔记本选型
适合日常学习和代码编写,不适合大规模训练。
品牌 | 建议型号 |
---|---|
Apple | MacBook Pro 16" M2 Max(适合轻量推理) |
Dell | XPS 15 9730 (RTX 4070) |
Lenovo | ThinkPad P1 Gen 6 (RTX 3080) |
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
大模型全套学习资料领取
这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
五、AI产品经理面试题
六、deepseek部署包+技巧大全
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~