假如普通人从5月开始快速系统的学习大模型,按这个学习路径两周就能学会!

在两周内系统学习大语言模型(LLM, Large Language Models),需要明确目标和计划,并结合适当的硬件支持。以下是一个详细的学习计划,包括基础知识、进阶内容和实战应用,同时提供计算机设备选型建议。

学习目标

  1. 掌握 LLM 的基本原理和架构 :理解 Transformer 模型、GPT、BERT 等架构。

  2. 熟悉 LLM 的训练与推理流程 :学习模型预训练、微调、推理的过程。

  3. 了解 LLM 在不同领域的应用 :如文本生成、问答系统、对话机器人等。

  4. 实现一个基础的 LLM 项目 :从零开始微调一个小型 LLM,并进行推理测试。

在这里插入图片描述

学习计划概述

时间段学习内容实践任务
第 1-2 天Transformer 和 LLM 基础理解 Transformer 结构,阅读 GPT 和 BERT 的论文
第 3-4 天深入 LLM 架构和模型训练搭建环境,实验微调 BERT 或 GPT-2
第 5-6 天模型优化与推理加速使用量化、蒸馏等方法优化模型性能
第 7-8 天LLM 在 NLP 中的应用实现文本生成、问答系统、情感分析等任务
第 9-10 天高效模型微调与大模型部署使用 LoRA、PEFT 等微调方法;了解部署技术
第 11-12 天实战项目:微调与测试微调一个小型 GPT 模型,并测试推理效果
第 13-14 天总结与复习整理笔记,完成报告和项目展示

详细学习内容和资源

第一阶段:基础知识与理论学习(1-4 天)
  • Transformer 模型

论文:Attention Is All You Need https://arxiv.org/abs/1706.03762

学习内容:阅读《Attention Is All You Need》论文,理解 Attention 机制。

参考资源:

  • LLM 架构

  • 学习 GPT、BERT、RoBERTa、T5 等不同 LLM 架构的特点和适用场景。

  • 阅读 GPT 系列(GPT-1, GPT-2, GPT-3)的演变过程。

第二阶段:模型训练与推理(5-8 天)
  • 环境搭建

  • 安装 PyTorch 或 TensorFlow,熟悉 Hugging Face 的 transformers 库。

  • 模型微调

  • 使用 Hugging Face transformers 库,微调 BERT 或 GPT-2 模型。

  • 任务示例:在文本分类任务(如 IMDB 影评分类)上进行微调。

  • 优化与推理加速

  • 学习模型量化(Quantization)、知识蒸馏(Distillation)、模型剪枝(Pruning)。

  • 使用 ONNXTensorRT 优化推理性能。

第三阶段:实战应用与项目开发(9-14 天)
  • NLP 应用

  • 实现文本生成、命名实体识别(NER)、情感分析等任务。

  • 示例项目:构建一个简单的对话机器人。

  • 高效微调方法

  • 使用 LoRA(Low-Rank Adaptation)进行参数高效微调。

  • 使用 PEFT(Parameter-Efficient Fine-Tuning)方法提升微调效率。

  • 模型部署

  • 学习使用 FastAPI 部署 LLM 服务,并使用 Docker 容器化模型。


计算机设备选型建议

考虑到 LLM 的训练与推理需求,需要具备较高计算性能的设备,尤其是 GPU 支持。

1. 桌面工作站配置

适合需要本地训练和测试的场景。

配件建议配置
CPUAMD Ryzen 9 7900X / Intel i9-13900K
GPUNVIDIA RTX 4090 / RTX 4080(24GB 显存更好)
内存64GB DDR5
存储NVMe SSD 2TB
操作系统Ubuntu 22.04 / Windows 11
2. 云服务器配置

适合需要大规模模型训练和部署的场景。

  • AWS EC2 / GCP / Azure

  • 使用 NVIDIA A100 或 V100 GPU 实例。

  • 内存配置至少 64GB,GPU 显存建议 40GB 以上。

  • 使用 Docker 管理环境,并结合 CUDA、cuDNN 进行 GPU 加速。

3. 本地轻量笔记本选型

适合日常学习和代码编写,不适合大规模训练。

品牌建议型号
AppleMacBook Pro 16" M2 Max(适合轻量推理)
DellXPS 15 9730 (RTX 4070)
LenovoThinkPad P1 Gen 6 (RTX 3080)

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:

在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!

大模型全套学习资料领取

这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

六、deepseek部署包+技巧大全

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值