MoT:高效的多模态Transformers

本文介绍Meta 最近提出的用于提速多模态 Transformer 的框架 Mixture of Transformers (MoT)。MoT 是一种稀疏多模态 Transformers,可以在文本和图像处理中仅使用一半的计算资源达到与传统模型相当的性能。

MoT 框图如下图所示:

MoT 旨在处理任意交错模态(如文本、图像和语音)序列。每种模态都使用单独的一组非 Embedding 的 Transformers 参数(包括 FFN、Attn 和 LayNorm)。在训练过程中,每种类型的模态使用特定的模态损失函数进行优化。

Motivation

LLMs 的发展已经扩展到能够在统一框架内处理多种数据类型的多模态大型语言模型(MM-LLMs)。最近研究表明可以通过 Early-fusion 和 Mixed-modal 在统一架构内处理多模态数据。虽然这种模型具有很大的研究和应用潜力,但由于同时需要跨多个模态进行学习,使得它对数据和计算资源的需求显著增加。

训练 Eary-fusion 的多模态 LLMs 需要比单模态模型更大的数据量和计算资源。每种模态都引入了相应的优化挑战,这些挑战又要求在统一模型中同时解决。经验上,这些模态在 Dense Transformer 模型训练中相互冲突,使优化变得复杂,并增加了计算负载。

此外,为了探究多模态基础模型的内部表示,作者对它们的特征空间进行可视化分析,如下图所示:

传统多模态模型将文本和图像的 Token(如单词和图像片段)的混合序列作为一个单一流进行处理。采用自回归方法,预测序列中的下一个 Token(单词或图像片段)。

随着层数的增加,模型自然地开始将不同模态的 Token(文本和图像)在特征空间中分组成单独的 Cluster。这表明随着层数的增加,模型区分数据类型的能力不断增强。虽然模型将所有数据统一处理,但它依然会在内部区不同模态的数据,这表明增加模态特定组件可以进一步增强这种模型内对模态的区分并提高效率。

受此启发,作者提出了 Mixture-of-Transformers(MoT)的稀疏多模态 Transformer 架构。通过根据模态解耦参数,MoT 降低了计算要求,并减轻了 Dense 架构中出现的训练冲突。

Mixture of Transformers (MoT)

Modality-Specific Parameter Decoupling

MoT 为所有非 Embedding 的 模型参数(包括 FFN、Attn 矩阵和 LayerNorm)引入特定于模态的权重,从而扩展标准 Transformer 架构。它使模型能够更有效地处理不同模态,同时保持学习跨模态交互的能力。

设 为 Token 的输入序列,其中每个 属于一种模态。典型的 Transformer 可以表示为:

在 MoT 中,根据模态来解耦参数,但保留了全局自注意力机制:

虽然 MoT 对参数根据不同模态进行了解耦,但由于全局自注意力机制跨越所有模态运行,它能捕捉跨模态关系:

其中,、和是特定于模态的投影矩阵,和是特定于模态的层归一化。

MoT算法如下所示:

Experiments

作者进行了大量实验,在不同多模态设置下从头开始预训练十三个实例(包括三个7B模型)来评估 MoT 的有效性。实验主要结论如下:

  • 7B 的 MoT模型在仅使用 55.8% 的FLOPs的情况下,达到了与一个 7B Dense 基准模型相当的效果:

  • 将模态扩展至三种(文本、图像和语音)时,MoT 仅使用了37.2%的训练FLOPs,在所有模态上达到了与 Dense 基准模型相当的性能

  • 在Transfusion设置中,7B 的 MoT 模型仅使用1/3的FLOPs,实现了与Dense 基准模型相当的性能

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值