本篇分享论文Mini-Monkey: Multi-Scale Adaptive Cropping for Multimodal Large Language Models
,华科大提出2B最强多模态大模型- Mini-Monkey!
-
论文地址:https://arxiv.org/pdf/2408.02034
-
项目地址:https://github.com/Yuliang-Liu/Monkey
研究动机
随着自然语言处理(NLP)领域的飞速发展,大型语言模型(LLMs)已成为研究的热点。然而,现有的多模态大型语言模型在处理高分辨率图像时通常使用一个切分策略,这个切分策略会不可避免会对目标、联通区域带来割裂,导致MLLM对于微小或形状不规则的目标的辨识能力。这个现象在文档理解任务中,表现极为明显,这限制了它们对细节场景的理解能力。
如下图(b)所示,切分策略导致图片中问题的语义丢失了,把豚鼠的鼻子看成了一直猴子。Mini-Monkey正是为了解决这一问题而生。
Mini-Monkey不仅在2B参数规模的MLLM中取得了SOTA性能,更在OCRBench基准测试中以802分的成绩,超越了8B参数的现有最先进模型InternVL2-8B。
图1. (a)输入图像。(b)切分策略导致的“锯齿效应”。(c)有重叠的进行切分。(d)本文提出的方法。
方法
-
Mini-Monkey提出了两个重要创新:多尺度自适应裁剪策略(MSAC)和尺度压缩机制(SCM)
-
MSAC策略允许Mini-Monkey在不同尺度上捕捉图像特征,有效避免了因裁剪导致的信息丢失。
-
SCM的应用不仅减轻了计算负担,更通过智能压缩,确保了模型在处理大量视觉数据时的高效性。
图2 总体方法框图
多尺度自适应裁剪策略(MSAC)
-
MSAC通过预设的一组网格,根据网格的宽高比和分辨率执行分层操作。
-
每个分层层选择不同的宽高比,确保文本不会在不同图像中被分割。
-
详细层(Detailed layer,)负责提供详细的信息,限制子图像的最大和最小尺寸,以确保图像中的对象尽可能清晰。
-
适应层(Adaptive layer)与详细层协同工作,确保裁剪线在详细层和适应层之间不重叠,以提供不同尺度的非分割对象特征。
-
全局层(Global layer)负责提供全局的图片信息。
-
不同层之间协同工作相互促进,提高了图片信息的利用效率
尺度压缩机制(SCM)
-
SCM主要对详细层的视觉Tokens进行压缩,因为这些标记通常具有较低的信息密度。而适应层和全局层的Tokens则提供给LLM完整的空间信息,使得在降低计算量的同时,能提供较多的信息量给LLM,进而实现了比较高的性能。
-
SCM利用大型语言模型(LLM)中的注意力层来确定哪些视觉标记是重要的。通过这种方式,它能够识别出信息密度较高的标记,并将它们保留,同时过滤掉那些相对不那么重要的标记。
-
SCM是一个无需训练的模块,这意味着它不会引入额外的训练成本。它直接利用已经训练好的LLM的注意力层来工作。
-
与FastV对比:SCM:通过注意力机制压缩具有低信息密度的标记,保留自适应层和全局层的视觉标记,为LLM提供了完整的空间信息。FastV:压缩策略可能包括随机选择或基于其他启发式的方法来减少标记数量。在论文的消融研究中,SCM在50%压缩和90%压缩的条件下,分别比FastV的性能高出21.5%和4.4%,这表明SCM在压缩效率和保持模型性能方面更为有效。
试验结果
Mini-Monkey在11个通用多模态理解基准测试中超越了其他2B参数模型,并在多个与文本相关的基准测试中取得了优异的成绩。
表1. 多模态理解基准上的结果
表2. 文本相关的基准
消融实验
表3. 多尺度自适应裁剪策略的消融实验。第一行是动态切分,第二行是固定分辨率切分,第三行是有重叠的切分,第四行是多尺度策略。
表4. 将MSAC应用到不同的多模态大模型上都能获得一致的提升。
可以看到Mini-Monkey同时在通用多模态理解和文档理解任务上都有一致的提升。并且提出的MSAC在不同的结构上都能有明显的提升。
定性结果
论文还提供了一些定性结果,如图(d)的例子,展示了Mini-Monkey如何克服“锯齿效应”,准确地识别和理解图像中的文字信息。
图(b)说明了有重叠的切分的并不能很好的解决“锯齿效应”。
图(c)说明了“锯齿效应”在较小的模型更明显。
图4定性结果。(a)输入图像和Ground Truth。(b)采用重叠切分策略的结果。OSC表示重叠切分策略。© internv2 - 2b和internv2 - 26b的结果。(d) Mini-Monkey的结果。
可视化对比
(a)输入图片
(b)Mimi-Monkey的回答。Mini-Monkey准确的识别出所有文字。
(c)MiniCPM-V 2.6的回答。MiniCPM-V 2.6漏掉了很多文字。
(d)InternVL2-2B的回答。InternVL2-2B漏掉了一整句比较模糊的文字。
(e)GPT-4o的回答。GPT-4o拒绝回答。
结语
Mini-Monkey提出了一种克服“锯齿效应”的方法多尺度自适应裁剪策略(MSAC),并且在不同架构的多模态大模型下都验证了它的有效性。
并且针对MSAC引入的计算量,作者还进一步设计了一种不用训练的SCM进一步压缩视觉Tokens减少计算量,配合着MSAC使用。
以后再也不用担心切片引起的“锯齿效应”,MSAC让大家以后可以放心的使用切片来提升多模态大模型的输入分辨率!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。