医疗多模态基础大模型在临床诊疗中的应用、挑战与未来方向 - 清华大学、长庚医院等

摘要

近期大模型进展极大地革新了临床诊疗领域,提供了改善各类临床领域诊断精度和治疗效果的新方法,从而推动了精准医疗的追求。多器官和多模态数据集的日益丰富加速了大规模医疗多模态基础模型(MMFMs)的发展。这些模型以其强大的泛化能力和丰富的表征能力而闻名,正越来越多地被用于解决从早期诊断到个性化治疗策略的广泛临床任务。本综述全面分析了多模态基础模型(MMFMs)的最新发展,重点关注三个关键方面:数据集、模型架构和临床应用。我们还探讨了优化多模态表征的挑战与机遇,并讨论了这些进展如何通过提高患者成果和更高效的临床工作流程来塑造医疗保健的未来。

[2412.02621] Medical Multimodal Foundation Models in Clinical Diagnosis and Treatment: Applications, Challenges, and Future Directions

https://arxiv.org/abs/2412.02621

核心速览

研究背景

  1. 研究问题:这篇文章要解决的问题是如何利用多模态基础模型(MMFMs)在临床诊断和治疗中的应用,解决现有技术在这些领域的局限性和挑战。

  2. 研究难点:该问题的研究难点包括:数据集的多模态性、模型架构的复杂性以及临床应用的实际挑战。

  3. 相关工作:该问题的研究相关工作包括自然语言处理(NLP)中的基础模型(如BERT、CLIP和DALL-E),以及医学影像分析中的大规模多模态模型(如MMFMs)。

研究方法

这篇论文提出了医疗多模态基础模型(MMFMs)用于解决临床诊断和治疗中的复杂问题。具体来说,

  1. 数据集:首先,论文分析了用于训练MMFMs的大规模数据集,探讨了数据集的多样性和规模对模型性能的影响。数据集包括文本数据集(如MedNLI、SEER、MIMIC-III)、医学影像数据集(如MC-CXR& SZ-CXR、CBIS-DDSM-CALC&MASS)和图像-文本对数据集(如ROCO、PMC-OA)。

  2. 模型架构:其次,论文探讨了MMFMs的两种主要类别:MMVFVMs和MMVLFMs。MMVFVMs专注于多模态视觉任务,如不同类型医学图像的集成和处理;MMVLFMs则扩展了多模态方法,结合了视觉和文本数据,从而实现更全面的分析。

  3. 代理任务:此外,论文详细介绍了MMFMs中的代理任务,包括分割代理任务、生成代理任务、对比代理任务和混合代理任务。这些任务帮助模型捕捉细粒度的特征和跨模态的相关性。

  4. 对比学习:论文还讨论了对比学习在MMFMs中的应用,通过比较正样本和负样本来学习稳健的特征表示。例如,SimCLR和MoCo是两种常用的对比学习方法。

实验设计

  1. 数据收集:实验使用了多种公开可用的医学数据集,包括MC-CXR& SZ-CXR、CBIS-DDSM-CALC&MASS、MMR Datasets等。

  2. 实验设计:实验设计包括对MMFMs进行预训练和微调,以适应不同的下游医学任务,如分割、分类、检测和报告生成。

  3. 样本选择:选择了包含多种模态数据的样本进行训练,以确保模型的泛化能力。

  4. 参数配置:在模型训练过程中,使用了不同的优化算法和学习率调度策略,以获得最佳性能。

结果与分析

  1. 分割任务:在分割任务中,MedSAM和SAM-Med2D模型在多个医学影像分割竞赛中表现出色,显著优于现有的最先进模型。

  2. 生成任务:在生成任务中,AutoSMIM和AnatoMask模型在医学图像分割中展示了显著的性能提升,特别是在处理复杂解剖结构和区域时。

  3. 对比学习:SimCLR和MoCo模型在对比学习中表现出色,特别是在处理多模态医学影像数据时,能够有效捕捉跨模态的特征表示。

  4. 临床应用:在临床应用中,MMFMs在放射科报告生成、疾病诊断和治疗决策中展示了显著的优势,提高了诊断精度和临床工作效率。

总体结论

这篇论文全面分析了医疗多模态基础模型(MMFMs)的最新进展,探讨了其在临床诊断和治疗中的应用。通过大规模数据集和先进的模型架构,MMFMs在分割、分类、检测和报告生成等任务中展示了显著的性能提升。尽管存在一些挑战,如数据集多样性和计算资源需求,但MMFMs在未来医疗人工智能领域具有巨大的潜力和应用前景。未来的研究应继续优化模型的数据和计算效率,提高其可持续性和可靠性,并在实际临床环境中进行验证。

论文评价

优点与创新

  1. 全面的综述:论文对医疗多模态基础模型(MMFMs)的最新发展进行了全面分析,涵盖了数据集、模型架构和临床应用三个方面。

  2. 多样化的数据集:详细介绍了多种大规模的多模态数据集,展示了这些数据集在训练MMFMs中的重要性。

  3. 创新的模型架构:探讨了多种用于MMFMs的模型架构,特别是视觉-语言基础模型(CLIP及其在医学领域的应用)。

  4. 广泛的临床应用:分析了MMFMs在放射科报告生成、诊断和治疗决策中的应用,展示了其在提高诊断精度和临床工作效率方面的潜力。

  5. 详细的挑战与机遇:讨论了优化多模态表示的挑战和机遇,探讨了这些进展如何塑造未来医疗保健的发展方向。

  6. 未来的研究方向:提出了未来研究的多个关键领域,包括数据和计算、能力和可持续性、可靠性和可解释性、法规与隐私等。

不足与反思

  1. 数据标准化和整合:论文提到,尽管多模态数据的整合至关重要,但由于医疗数据在不同机构、地区和国家的分散性,数据标准化和整合仍然是一个重大挑战。

  2. 可持续学习机制:未来的研究需要关注改进可持续学习机制,以便MMFMs能够在不完全重新训练的情况下适应新数据和任务。

  3. 模型可靠性:需要在不同的临床环境中提高模型的可靠性,确保模型在各种患者人群、医疗环境和成像模态下都能稳定运行。

  4. 法规和隐私:随着MMFMs的发展,遵守相关法规和隐私标准将成为部署过程中的关键问题。论文建议未来的研究应专注于开发创新的隐私保护技术,如差分隐私、安全多方计算和同态加密。

关键问题及回答

问题1:MMFMs在医学影像分析中的具体应用场景有哪些?

  1. 放射科报告生成:MMFMs可以结合医学影像和患者的文本病史,生成更准确的放射科报告,从而减轻放射科医生的工作负担。

  2. 医学影像理解:MMFMs能够解释复杂的医学影像,提供可操作的洞察,帮助医生做出更有效的临床决策。

  3. 异常检测:MMFMs在X光、CT、MRI等多种影像模态中识别异常区域和病变,提高诊断的准确性和早期疾病的检测能力。

  4. 疾病分类:通过整合多模态数据,MMFMs可以进行更全面的疾病分类,例如心血管疾病的分类和视网膜疾病的诊断。

  5. 手术规划和导航:MMFMs可以在手术过程中实时标注关键解剖区域和手术工具,辅助手术规划和导航,提高手术的精确性和安全性。

问题2:MMFMs在医学影像分析中如何利用对比学习来提高模型性能?

  1. 数据增强:使用对比学习框架,如SimCLR和MoCo,通过对同一数据样本的不同增强视图进行对比,学习更鲁棒的视觉表示。

  2. 正负样本对比:在对比学习中,模型将同一数据样本的不同增强视图视为正样本,而将不同数据样本视为负样本,通过最大化正样本之间的相似性和最小化负样本之间的相似性来学习特征表示。

  3. 特征对齐:对比学习确保图像和文本特征在共享的特征空间中对齐,使得模型能够更好地理解和关联不同模态的数据。

  4. 预训练和微调:首先在大量无标签数据上进行预训练,然后在特定任务的有标签数据上进行微调,从而提高模型在下游任务中的性能。

问题3:MMFMs在医学影像分析中如何应对数据稀疏性和计算复杂性的挑战?

  1. 自监督学习:通过自监督学习方法,如Masked Autoencoders(MAE)和Simple Masked Image Modeling(SimMIM),利用未标记数据进行预训练,减少对大量标注数据的依赖。

  2. 多尺度对比学习:使用多尺度对比学习方法,如GLoRIA和LoVT,结合全局和局部特征的学习,提高模型对局部细节的捕捉能力。

  3. 混合代理任务:通过结合多种代理任务,如分割、生成、对比和混合任务,提高模型的表示能力和泛化能力。

  4. 模型压缩和优化:采用模型压缩技术,如模型剪枝和知识蒸馏,以及高效的硬件加速,如AI加速器,降低计算成本,提高模型的可持续性和扩展性。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值