说起文生语音模型,最广为人知的肯定是 OpenAI 的 Whisper,之前试过确实很 OK,不过国内要使用比较麻烦而且收费,所以今天要说的是一款开源语音模型——ChatTTS,它在短短两个月的时间就获得了 29k 的 Star。
为什么它如此受欢迎?三金觉得起码有以下三点:
- 开源免费,个人电脑只要配置不是太差都能跑
- 生成的语音真的很逼真,还可以加一些语气词、笑声、停顿
- 提供 WebUI,简化操作
而在 ChatTTS 开始发力之后,它的派生项目也接踵而至,其中比较知名的就是三金部署的——ChatTTS-ui,它简化了 ChatTTS 中的 WebUI,让用户只需要关注要转化的文字、音色、语速、语气和笑声等几个常用项,并支持对外提供 API 接口。
接下来我们就从项目部署、使用、及 API 接口逐一介绍~
部署
以 Mac 电脑为例,部署超级简单!前置准备有以下三点:
- 首先,电脑上需要有 python 3.9+ 以上的环境;
- 其次,需要安装 git,因为需要拉项目源码,源码地址
- 最后,需要安装可以处理音频文件的库 libsndfile 以及 ffmpeg
brew install libsndfile git python@3.10 ffmpeg
export PATH="/usr/local/opt/python@3.10/bin:$PATH"
source ~/.bash_profile
source ~/.zshrc
这样环境就搭建好了。
接下来创建空目录并拉取代码:
mkdir /data/chattts
cd /data/chattts
git clone https://github.com/jianchang512/chatTTS-ui .
创建并激活虚拟环境:
python3 -m venv venv
source ./venv/bin/activate
安装依赖及 torch,并启动项目:
pip3 install -r requirements.txt
pip3 install torch==2.2.0 torchaudio==2.2.0
python3 app.py
启动项目后会自动打开浏览器窗口,默认地址是 http://127.0.0.1:9966
,样子就是上面👆的贴图了。
使用
使用方法很简单:
- 输入想要转成语音的内容
- 选择一个自己喜欢的音色
- 点击「立即合成声音」即可
我们也可以(常用):
- 自定义音色值,选择之后就会忽略左侧所选的音色
- Text Seed:文本种子,它其实是用于 refine text 的停顿。这个值的设置会影响音色、音调。
- Prompt:可以用来添加笑声、停顿等效果。比如
[oral_2][laugh_0][break_6]
,但是这个功能三金试了一下有些问题,并不能如官网上演示的那样添加语气,而是直接把单词读出来了,我看 issue 中也有相同的问题,有大佬知道是怎么回事吗? - 默认勾选了跳过 refine text,也就是文本优化处理,我们关掉这个之后,就音色和音调都会好很多。
- 语速:这个不过多解释了吧
- temperature:用来控制输出的随机性。啥意思呢?默认是 0.1,生成的语音会比较平稳,我们设置到 0.3 之后生成的语音会更富有感情。
其他参数太专业了,不了解了😂
合成声音之后就会自动播放出来,并且可以下载音频。这里还可以查看对应的 API 调用是怎样的:
API 接口
如上图,ChatTTS-ui 为我们提供了 API 接口调用,现在就让我们来试一下,在 Dify 中自定义一个 ChatTTS 的工具:
然后先做成一个工作流再插入到 Agent 中使用:
虽然 API 调用成功了,但是在 Dify 中呈现的方式却不是三金预期的,只能点那个链接新开一个页面才能听,有大佬知道咋解决吗?
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓