零基础玩转AI智能体,我该怎么选!与Coze(扣子)、Dify区别在哪?

引言:收到最多的问题就是关于n8n与coze(扣子)、Dify有何不同,n8n和他们相比有什么优势?疯哥是资深n8n玩家,深知n8n能带给个人和企业多么强大的能力。但是,非常多的国内朋友从来都没听说过n8n,更不用提使用n8n为自己和企业搭建强大的AI自动化工作流。

感觉,有必要专门写一篇介绍n8n,讨论n8n与coze(扣子)、Dify的区别以及它的特点和优势。

疯哥的AI自动化教程(课程)都是围绕n8n展开的,文章和课程中涉及到的很多思路方法和技巧在别的自动化工作流工具上来说也是适用的。

Image

我们快速过一遍n8n

疯哥快速为大家过一下n8n的来历

n8n是一家德国的创业公司,创始人Jan Oberhause 早在2019年在柏林就开始了n8n项目。Jan Oberhauser是一位艺术出身的视觉设计师,在开始n8n项目之前他还参与过《加勒比海盗》多部电影后期视觉制作,就在他参与非常多的视觉工作中大量使用了自动化技术帮助他的工作,所以n8n想法和灵感就从这个时候开始,2019年启动了n8n项目从此正式踏入自动化领域。

图片

在2020年n8n获得红杉资本的150万美金的第一笔种子投资,有意思的是,n8n是红杉资本在德国的第一个种子投资案例。

在此之前,Zapier,RapidAPI和Tray.io这样的工具公司已经相对比较成熟了,但是Jan觉得他们的产品不够灵活而且价格也不便宜。当时,他的答案就是开发一套能满足自己需求的工作流软件这就是后来的n8n。

图片

自由可持续,开放且务实”是他对n8n的诠释和定位,这句话很对疯哥的胃口,你要问我为什么选择n8n很大程度上就是因为n8n的这句口号。所以,n8n一直维护着一个开源的版本,并且与官方版本保持一致,任何人都可以私有化部署它。

图片

背景介绍完了,疯哥简单对n8n做个总结,n8n是一款开源的自动化工作流工具,被开发者称为“自动化领域的瑞士军刀”。它的核心目标是帮助用户通过可视化操作,连接不同的应用和服务,自动完成重复性任务。无论是个人用户还是企业团队,都能用它实现跨平台数据同步、业务流程自动化,自从ChatGPT横空出世后n8n已经结合了所有主流AI大模型和知识库等AI套件帮助用户开发复杂自动化任务

图片

图片

图片

图片

n8n在GitHub上的介绍可以侧面了解它所支持的功能,下面截图是n8n使用了哪些开发语言,它们各自占比。

n8n典型落地场景:

1.人工智能应用

2.数据分析

3.企业营销

4.客服沟通

5.财务会计

6.企业IT运营

7.企业(CRM)客户关系管理

8.嵌入式自动化

9.系统无限集成

n8n的核心特点与优势:

1. 完全开源免费

n8n代码公开,可免费自托管(如通过Docker部署),无需担心使用成本或数据隐私问题,尤其适合预算有限的团队。

图片

2. 可视化+代码双模式

通过拖拽节点设计工作流,非技术用户也能上手;如果恰巧你懂JavaScript/Python那么n8n也提供JavaScript/Python代码运行处理,满足开发者深度定制需求

图片

图片

3. 超强集成能力

支持400+应用(如Notion、飞书、GitHub)的API连接,覆盖办公、开发、营销全场景。

n8n对接了400多个外部应用API,n8n几乎集成了全球所有常用的并且开放API的应用,你能想到的国外应用基本上都可以在n8n中的节点列表中找到,包括一些开发方面的工具产品比如数据库,具体可以去n8n官方网站查看,截图如下:

图片

图片

图片

图片

以上是前三页截图。

4. 灵活部署

可本地部署(NAS、服务器)或使用云端服务,完全掌控数据流向

图片

5. 原生AI支持

基于AI Agent、LangChain构建AI应用,能调用自定义模型处理复杂任务,案例截图:

图片

n8n毕竟是国外产品,当然对国外的大模型支持的非常全面,包括OpenAI大模型系列、谷歌大模型系列、Anthropic大模型系列、llama系列大模型,另外,只要API调用兼容OpenAI API的其他大模型都可以在n8n配置使用,在疯哥之前文章中也都详细介绍了如何配置,包括国内最火的Deepseek系列。n8n也支持不同的向量数据库配合AI Agnet节点开发企业级知识库都是非常轻松的事情,下篇文章疯哥将详细介绍n8n打造个人知识库的技术。

图片

图片

我们再快速过一遍Dify

随着大型语言模型(LLM)不断涌现的各种能力,AI应用的场景变得更加广阔。然而,对于大多数开发者而言基于 GPT 等大型语言模型、Langchain 等技术框架开发 AI 应用仍然是一项门槛极高的任务。开发者必须花费大量时间学习各种晦涩的概念和技术研究,也无法进行 AI应用的持续运营,Dify就是为了解决这些问题而生,开发者无需关注基础设施的底层原理,只需专注于将想象力转化为实际落地的 A 应用并持续运营,可以将大型语言模型变成像云计算服务一样易于使用。它结合了“后端即服务”Backend-as-a-ServiceLLMOps理念。目的是帮助用户快速构建企业场景的AI应用。它是一款低代码平台,不会编程的人也能进行应用搭建。

Dify名字是“Define(定义)”+Modify(修改)”取这两个英文单词中的一部字母拼接成“Dify”。寓意不断自我更新的工具

单从名字简约设计来说n8n是最简短的,也是最容易记的。

Dify母公司叫“苏州语灵人工智能科技有限公司”,创始人张路宇,是位90后。是不是苏州人不得而知,疯哥看到BOSSDify正在招聘,他们公司地址在苏州吴中区腾飞苏州创新园

图片

Dify2023年才成立,2018年张路宇的创业公司被腾讯收购,所以在创建Dify前的几年他就一直在腾讯工作。其实,就是OpenAI2022年开始席卷全球开始,张路宇又有了创业的冲动。这次,张路宇all in AI 2023年一开始Dify推出产品并不包括工作流,是基于知识库(RAG)的客服聊天机器人,当时产品上线后也获得了不小的关注。直到了2024年才将工作流添加到Dify产品当中去。Dify是一个兼顾易用和灵活的开发框架。一年后DifyGitHub上超过了3万个星星,疯哥在写本篇教程时Dify在Git

Hub上获得的星星已经达到82万,相比较n8n的星星稍差了12万,n8n现在也已经达到62万个星星了。

Dify CEO 张路宇亲自解释:“Dify是面向应用开发者的大模型的应用技术栈,或者说应用开发平台,缩写是LLMOps,我们第一个提出LLMOps概念是在20232月份,当时全球互联网都搜不到这个词。

图片

所以,Dify和Coze这两款产品的设计的初衷并不是要解决业务自动化而是要围绕大模型能快速搭建个人或企业AI应用。其中,Coze更偏向个人AI应用,在企业级应用场景下Difyn8n具备相似性,他们都开源而且可以私有化部署。虽然,Difyn8n都适合企业级应用场景,n8n在自动化工作流领域更加的通用,更加灵活、更加的成熟,并且n8n在全球的企业用户是最多的。

图片

图片

图片

图片

Dify在GitHub上的介绍可以侧面了解它所支持的功能,下面截图是Dify使用了哪些开发语言,它们各自占比。

疯哥从国外社交平台上收到一些用户对Dify的评价总结如下:

一、开源且可掌控

1. 数据可以由用户自己控制,不担心被泄露。

2. 基于开放的架构可自己定义和扩张。

二、生产环境友好

1. 提供Backend-as-a-Service功能,简化了后端的开发流程。

2. 具备API接口,方便集成到用户自己的业务系统中去。

 三、快速开发部署

1. 操作界面让懂技术的和不懂技术的都能快速上手。

2. 工作流设计应用到部署也非常快。

图片

我们最后过一遍Coze(扣子)

Coze(扣子)疯哥不用多说字节跳动旗下的AI应用搭建平台,2025年大家或多或少都听说过Coze(扣子),有些同学可能还请自动手搭建过Coze(扣子)工作流。说到Coze(扣子)是这三款工具中最不应该拿来和n8n对比的,因为,Coze(扣子)本身就不是一款通用型的企业自动化工作流工具,我们来看一下Coze(扣子)官方的定义:

Coze(扣子)官方解释:“扣子是新一代 AI 应用开发平台。无论你是否有编程基础,都可以在扣子上快速搭建基于大模型的各类 AI应用,并将 AI 应用发布到各个社交平台、通讯软件,也可以通过API  SDK  AI 应用集成到你的业务系统中。

我们看一下Coze(扣子)主要用途:

借助扣子提供的可视化设计与编排工具,你可以通过零代码或低代码的方式,快速搭建出基于大模型的各类AI 项目,满足个性化需求、实现商业价值。 

智能体智能体是基于对话的 AI 项目,它通过对话方式接收用户的输入,由大模型自动调用插件或工作流等方式执行用户指定的业务流程,并生成最终的回复。智能客服、虚拟伴侣、个人助理、英语外教都是智能体的典型应用场景。

应用应用是指利用大模型技术开发的应用程序。扣子中搭建的 AI 应用具备完整业务逻辑和可视化用户界面,是一个独立的 AI 项目。通过扣子开发的 AI 应用有明确的输入和输出,可以根据既定的业务逻辑和流程完成一系列简单或复杂的任务,例如 AI 搜索、翻译工具、饮食记录等。

所以,Coze(扣子)更加像一款个人能快速搭建具备AI能力的App或小程序

图片

图片

n8n、Dify、Coze如何选择?

n8n vs Coze vs Dify(三款工具对比)

维度

n8n

Coze(扣子)

Dify

定位

通用型(个人/企业)自动化工作流 + 原生AI

快速搭建聊天机器人

企业级AI应用开发平台

门槛

中等(对API基础有了解)

低(完全无代码)

中高(需懂大模型培置)

核心

跨系统自动化,支持数据处理、同步等复杂操作

对话机器人、轻量级问答

大模型驱动、复杂任务处理

成本

开源免费,自托管无限制

免费但功能受限(如知识库仅支持6000token)

开源,需自备模型API密钥(费用高)

适用

1、传统企业和互联网公司,如生产制造、物流、跨境电商等。2、企业IT团队。3、股票金融等

职场小白用户、客服场景

1、主要针对海外市场的用户,Dity收费也是按美元计价。2、需深度定制AI应用的企业。

订阅

提供Saas订阅和开源版自托管服务、私有化部署

提供个人订阅

提供Saas订阅和开源版自托管服务、私有化部署

疯哥通俗比喻

n8n像“乐高积木”,自由拼装功能,但需要动手能力。

Coze像“快餐店”,5分钟做个聊天机器人,但食材有限。

Dify像“高级厨房”,能做米其林大餐,但得自己买食材(模型)。

掌握n8n需要的成本

学习成本

需要用户对API(接口)有一定理解,系统之间的连接都是基于API调用,疯哥在《掌握n8n,开启AI自动化之旅》系列教程中有具体阐述,大家只要看疯哥的文章掌握n8n就非常的快。

维护成本

自托管需一定的服务器管理能力,疯哥提供专属私有AI自动化服务器搭建服务,无需自己动手,所有都由疯哥帮你解决,具体可以在 www.fengchat.one 上详细了解。

最后如何选择?

快速搭建AI小程序:推荐Coze,快速实现简单基于AI对话的小应用。

搭建企业AI定制应用:推荐Dify、n8n。

搭建业务自动化+AI应用:推荐n8n。

图片

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### 使用DeepSeek构建智能体 #### 1. 获取 API Key 环境设置 为了使用 DeepSeek 构建智能体,首先需要获取 DeepSeek 的 API Key。由于 DeepSeek 接口形式 OpenAI 兼容,这使得集成过程更加简便[^2]。 #### 2. 配置基础环境 在开始之前,确保已安装并配置好必要的开发工具依赖项。对于 Dify 环境的具体设置,请参照相关指南完成初步配置工作[^1]。 #### 3. 创建智能体架构 创建智能体的关键在于定义其行为模式服务逻辑。可以考虑采用 Camel 多智能体框架作为起点,该框架提供了良好的结构支持复杂交互场景下的应用开发。 #### 4. 整合 Coze 扣子功能模块 通过引入 Coze 扣子组件,能够增强智能体的功能特性,比如实现更高效的对话管理任务处理能力。具体操作可参考详细的保姆级教程文档[^3]。 #### 5. 定制领域专用响应机制 考虑到 DeepSeek 是一个通用型大语言模型,在面对特定行业或主题时可能无法提供最精确的回答。为此,建议针对目标应用场景定制专门的知识库训练数据集,从而提高智能体的专业性准确性[^4]。 ```python import os from deepseek import Agent, EnvironmentConfig def setup_environment(api_key): config = EnvironmentConfig() config.api_key = api_key agent = Agent(config=config) return agent api_key = "your_api_key_here" agent_instance = setup_environment(api_key) if __name__ == "__main__": print(f"Agent initialized with key {api_key[:6]}...") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值