PyCharm+Ollama+DeepSeek-Coder+CodeGPT构建本地大模型编程工具

1.PyCharm

Pycharm是用的比较多的Python编辑器,下载社区版安装即可。下载地址:https://www.jetbrains.com/zh-cn/pycharm/ 安装操作也比较简单不做多的说明。

2.Ollama

Ollama是一个专为在本地环境中运行和定制大型语言模型而设计的工具。它提供了一个简单而高效的接口,用于创建、运行和管理这些模型,同时还提供了一个丰富的预构建模型库,可以轻松集成到各种应用程序中。

下载地址:https://ollama.com/download

安装后,打开命令窗口,输入ollama就能看到命令集功能说明,这些命令就能帮我们管理好不同大模型,包括安装、运行大模型

#命令说明``ollama --version#显示当前安装的 ollama 版本。``ollama serve #启动服务,启动 ollama 服务,默认监听在 http://localhost:11434 地址。``ollama create <model_name> [-f <modelfile_path>]#创建模型``ollama show <model_name>#查看模型信息<model_name>: 要查询的模型名称。``ollama run <model_name>#运行指定的模型。<model_name>: 要运行的模型名称。``ollama stop <model_name>#停止正在运行的模型。<model_name>: 要停止的模型名称。``ollama pull <model_name>#从注册表中拉取指定的模型。<model_name>: 要拉取的模型名称。``ollama push <model_name>#将本地模型推送到注册表。<model_name>: 要推送的模型名称。``ollama list#列出所有已下载的模型。``ollama ps#列出所有正在运行的模型。``ollama cp <source_model> <destination_model>将一个模型复制到另一个新命名的模型。``ollama rm <model_name>#删除指定的模型。<model_name>: 要删除的模型名称。

3.DeepSeek-Coder

DeepSeek-Coder是一个由DeepSeek公司开发的代码语言模型,它基于大规模的代码和自然语言数据集进行训练。该模型支持项目级别的代码完成和填充任务,具有卓越的性能,在多种编程语言和多个基准测试中达到了开源代码模型的领先水平。

使用ollama安装DeepSeek-Coder

#拉取``ollama pull deepseek-coder``#运行``ollama run deepseek-coder``#默认接口地址为http://localhost:11434

4.CodeGPT

CodeGPT 是一种基于自然语言处理技术的人工智能工具,可以自动生成程序源代码。为了更方便程序员在开发环境中直接使用ChatGPT。

安装完成编辑器右侧就出现如下图:

配置codegpt,选择deepseek-coder为大模型

5.测试

配置完成后重启pycharm

如上图,完成所有配置,在开发项目过程中遇到问题即可使用

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### 如何在 PyCharm 中通过 Ollama 安装并使用 DeepSeek 模型 #### 一、安装 OllamaPython 客户端库 为了能够在 PyCharm 中调用 Ollama 提供的服务,首先需要安装其 Python 客户端库 `ollama`。这可以通过以下命令完成: ```bash pip install ollama ``` 此操作应在 PyCharm 的终端中执行[^1]。 --- #### 二、启动 Ollama 服务 确保已经在本地环境中正确安装并启用了 Ollama 服务。如果一切正常,在浏览器地址栏输入 `本机IP:11434` 后应显示 “ollama is running…” 页面[^2]。 --- #### 三、配置 PyCharm 使用 CodeGPT 插件 为了让 PyCharm 能够集成 Ollama 并支持 DeepSeek 模型,需按照如下方式设置: ##### 1. **安装 CodeGPT 插件** 打开 PyCharm,依次导航至菜单项 `File -> Settings -> Plugins`。在 Marketplace 中搜索插件名称 `CodeGPT`,找到后点击安装按钮。完成后重启 IDE 使更改生效。 对于无法直接联网获取资源的情况,可以先在外网环境下下载该插件文件,再导入到内网版本的 PyCharm 进行离线部署。 ##### 2. **调整工具选项中的参数** 再次进入设置界面 (`File -> Settings`) ,定位到路径 `Tools -> CodeGPT` 下面的部分做进一步定制化处理: - 将 **Model** 设置为 `Ollama (Local)`; - 填入正确的服务器地址于 **Address** 字段处,比如形如这样的 URL 地址:`http://<your_ollama_server_ip>:11434` (其中 `<your_ollama_server_ip>` 替换为你实际运行着 Ollama 应用程序所在主机对应的网络标识符); - 测试连接状态是否良好——单击旁边提供的「Test Connection」按键验证连通状况;一旦确认无误,则继续下一步动作。 最后一步是从下拉列表里挑选目标使用的具体模型实例(例如这里提到过的 `deepseek-r1`),随后按下 「Apply」 键盘来存储这些修改后的设定值。 --- #### 四、编写测试脚本 当上述准备工作全部就绪之后,就可以着手准备一段简单的 python 程序用于检验整个流程的功能性。下面给出了一段基础示范代码片段作为参考依据之一: ```python from ollama import Client client = Client() response_generator = client.chat( model="deepseek-r1", messages=[ {"role": "user", "content": "Explain the process of photosynthesis."}, {"role": "assistant", "..."} # Placeholder for generated content. ], ) for chunk in response_generator: if "error" in chunk: print(f'Error encountered: {chunk["error"]}') elif "message" in chunk and isinstance(chunk["message"], dict) and "content" in chunk["message"]: print(chunk["message"]["content"]) ``` 这段示例展示了如何利用刚刚建立起来的基础架构去请求特定主题的信息解释,并逐步打印返回的结果数据流出来。 ---
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值