【架构解析】深入浅析DeepSeek-V3的技术架构

运行这个DeepSeek-V3需要的显存资源,我先去找更大的GPU VM去了…

一、DeepSeek-V3 的架构详解

1. 模型总体概述

DeepSeek-V3 是一款采用 Mixture-of-Experts(MoE)架构的大型语言模型,其核心参数配置如下:

  • 模型层数:61 层

  • 隐藏层维度:7168

  • 前馈网络维度:18432

  • 注意力头数:128

  • 词汇表大小:129280

  • 最大位置嵌入:163840

    该模型通过精细的架构设计,实现了在计算效率和性能上的平衡。

2. Mixture-of-Experts(MoE)架构

MoE 设置

  • MoE 层频率:1(即每一层都是 MoE 层)

  • 共享专家数:1

  • 路由专家数:256

  • 每个 Token 选择的专家数:8

  • MoE 专家前馈网络维度:2048

    专家数量与分布

  • 总 MoE 层数:58 层(第 4 层至第 61 层)

  • 每层专家总数:257 个(1 个共享专家 + 256 个路由专家)

  • 模型总专家数:14,906 个(257 个专家 × 58 层)

    活跃专家数量

  • 每层活跃专家:9 个(1 个共享专家 + 8 个路由专家)

  • 整个模型的活跃专家:522 个(9 个活跃专家 × 58 层)

    MoE 架构的优势

  • 计算效率高:每个 Token 只需计算少量专家,降低了计算成本。

  • 参数利用率高:拥有巨大参数容量(总参数量 6,710 亿),但实际计算的激活参数仅约 370 亿。

  • 专家专精化:路由机制使得专家专注于特定特征,提高模型性能。

    路由专家与共享专家的结合

  • 路由专家(Routed Experts)

  • 选择性激活:按需激活,利用门控机制(如基于亲和度分数的 Top-K 选择)决定哪些专家处理当前 Token。

  • 专精化处理:每个路由专家擅长处理特定类型的输入或特征,实现专精化。

  • 稀疏计算:仅激活部分专家,提高计算效率。

  • 负载均衡:确保不同专家在不同输入上均衡被激活,避免过载。

  • 共享专家(Shared Experts)

  • 全局参与:始终参与所有输入的处理,贡献通用知识。

  • 促进泛化:捕捉数据中的普遍模式,减少过拟合风险。

  • 提高稳定性:提供稳定的基础,即使路由机制不完美时,也能有可靠的输出。

3. 多头潜在注意力机制(MLA)

注意力机制参数

  • 注意力头数(nh):128

  • 每个注意力头的维度(dh):可理解为隐藏层维度 d 与注意力头数 nh 的关系,即 d = dh × nh。

  • 嵌入维度(d):7168(模型的隐藏层维度),表示词向量的维度。

  • 潜在维度(dc):一个较小的维度,用于压缩 Token 的特征。

    MLA 的实现思路

  • 低秩压缩:将 Token 的特征通过下投影矩阵 W^{DKV} 压缩到较小的潜在空间:

  • 公式:c_t^{KV} = W^{DKV} × h_t

  • 其中,h_t 为第 t 个 Token 的隐藏表示,维度为 d,通过 W^{DKV} 压缩到维度为 d_c 的 c_t^{KV}。

  • 还原与扩展:在需要计算注意力时,再通过上投影矩阵将潜在向量 c_t^{KV} 恢复到所需的 Key、Value 空间。

  • 位置编码处理:对必要的信息(如旋转位置编码 RoPE)的矩阵单独处理,确保模型能保留时序和位置信息。

    MLA 的优势

  • 降低计算与存储需求:通过压缩 Token 特征,减少了 Key、Value 的存储空间和计算量。

  • 提高推理效率:减少了推理时的缓存占用,加快了模型推理速度。

4. 辅助损失无关的负载均衡策略

传统方法的局限

  • 依赖辅助损失:传统的 MoE 模型使用辅助损失来平衡专家负载,但不合适的辅助损失可能损害模型性能。

    DeepSeek-V3 的解决方案

  • 偏置调整:为每个路由专家引入一个偏差项,动态调整其被选择的概率,以实现负载均衡。

  • 动态调整机制:在训练过程中,持续监控专家的负载情况,过载时降低偏差项,负载不足时增加偏差项。

  • 消除辅助损失:无需额外的辅助损失函数,减少对主要任务的干扰。

    补充性的序列级辅助损失

  • 防止极端不平衡:为避免单个序列中出现负载极端不均衡的情况,使用微小的序列级平衡损失,确保对模型性能影响最小。

    节点受限路由

  • 限制跨节点通信:每个 Token 最多只能发送到 4 个节点处理,降低通信开销。

  • 提高训练效率:减少跨节点通信,提高计算资源利用率,降低训练成本。

5. 多 Token 预测训练目标(MTP)

实现方式

  • 同时预测多个 Token:在训练过程中,模型不仅预测下一个 Token,还预测后续多个位置的 Token。

  • 模块设计

  • 主模型:预测下一个 Token。

  • MTP 模块:预测第 2、3、… 个后续 Token,每个模块共享嵌入层,包含自己的 Transformer Block 和输出头。

    MTP 的优势

  • 丰富训练信号:增加了训练信号密度,有助于模型学习长期依赖关系。

  • 提高生成质量:对续写任务更有帮助,生成更连贯的文本。

  • 加速收敛:额外的预测任务可能帮助模型更快地学习有效表示。

6. 训练优化策略

FP8 混合精度训练框架

  • 创新性:DeepSeek-V3 采用了 FP8 混合精度训练框架,并首次验证了其在超大规模模型上的有效性。

  • 模型参数:模型大小不到 700GB,得益于原生 FP8 的应用,大幅减少了显存占用。

  • 成本节约

  • 降低计算和存储需求:相比 FP16,FP8 浮点数的位宽降低一半。

  • 提高训练效率:减少显存占用和计算量,加速模型训练。

  • 实际效果:这样激进的 FP8 应用,在行业内尚属首次。

    高效的训练框架

  • 资源利用

  • GPU 数量:仅使用 2048 张 NVIDIA H800 GPU。

  • 训练时间:预训练不到两个月,总 GPU 小时约为 266.4 万小时。

  • 成本控制

  • 总成本:约合 557.6 万美元,远低于同等规模模型的训练成本。

  • 相对优势:比同级别模型的训练成本低了一个数量级。

二、DeepSeek-V3 的性能实测

近期,有科技评测团队对 DeepSeek-V3 进行了实际测试,结果显示该模型在多个方面表现卓越。

1. 模型性能表现

编程能力

  • 测试结果:在复杂编程题目上,DeepSeek-V3 能够生成正确且高效的代码,甚至超越了 GPT-4 等先进模型。

  • 示例:在解决命令行缓存和方向键处理的 Python 编程题中,DeepSeek-V3 给出了优雅且完美运行的代码。

  • 分析:这得益于模型在后训练阶段蒸馏了高级模型的数据和自身 R1 版本的推理能力,并将隐式的思维链(Chain-of-thought)注入到 V3 中,大幅提升了编程和推理能力。

    数学能力

  • 测试结果:在解决高中及以下难度的数学题目时,表现出色。在 Omni-MATH 基准测试中,对部分题目给出了正确答案。

  • 分析:虽然在极高难度的数学竞赛题上,表现仍有提升空间,但在常规数学问题上已具备较强竞争力。

    通用能力

  • 多语言支持:词汇表涵盖 129280 个词汇,支持多种语言的应用,特别是在英语、中文等语言任务上表现突出。

2. 与其他模型的比较

性能对比

  • 开源模型:与 Qwen2.5 72B、LLaMA-3.1 405B 等模型相比,DeepSeek-V3 在英文、多语言、代码和数学等方面均有明显优势。

  • 闭源模型:在某些任务上,DeepSeek-V3 的表现与 GPT-4、Claude 3.5 Sonnet 等闭源模型相当。

3. 情感理解与互动

情商测试

  • 测试结果:在涉及情感理解和互动的问题上,DeepSeek-V3 的表现略显不足,回答较为理性和安全,但缺乏情感色彩。

  • 分析:这可能与模型训练过程中对于安全性和稳健性的强调有关,未来可在情感理解上进行优化。

三、技术细节与创新亮点

1. 数据集优化

  • 数据增强:提高了数学和编程样本的比例,扩展了多语言覆盖范围,包括英语、中文等多种语言。

  • 数据质量:在高达 14.8 万亿 Tokens 的高质量数据上完成预训练,确保模型具备丰富的知识储备。

  • 蒸馏训练:蒸馏了高级模型的数据,如自身的 R1 版本,结合隐式思维链,提升模型的推理和生成能力。

2. 超参数和架构优化

  • MLA 的应用

  • 优势:降低了计算和存储需求,提高了推理效率。

  • 创新:在 DeepSeek-V2 中已有应用,DeepSeek-V3 进一步优化,取得更好的效果。

  • 路由专家与共享专家的结合

  • 创新点:通过动态调整偏差项,实现了辅助损失无关的负载均衡。

  • 优势:避免了传统辅助损失对模型性能的负面影响,提高了训练效率。

  • 节点受限路由

  • 限制跨节点通信:降低训练成本,提高训练效率。

  • 原理:类似于 Hadoop 的就近计算,减少了通信带来的计算代价。

3. 训练效率与成本控制

FP8 混合精度训练的创新性应用

  • 低显存占用:模型大小不到 700GB,远小于 6710 亿参数模型的理论大小。

  • 节约成本:仅使用 2048 张 GPU,训练成本约为 557.6 万美元,显著低于行业平均水平。

  • 行业首创:DeepSeek-V3 是行业内首个如此激进地采用 FP8 的大型模型。

    四阶段训练策略

  • 预训练阶段

  • 第一阶段:上下文长度为 32K。

  • 第二阶段:扩展上下文长度至 128K,采用 YaRN 技术。

  • 后训练阶段

  • 目的:进一步提升模型在特定任务和人机交互上的性能。

  • 结果:模型在编程、数学等任务上表现卓越。

  • 监督微调(SFT)和基于人类反馈的强化学习(RLHF)

四、优势总结

  • 高性能表现:在编程、数学等任务上取得领先成绩,展现出卓越的智商水平。

  • 低成本高效能:以较低的训练成本,实现了与大型闭源模型相当的性能。

  • 技术创新:在 FP8 混合精度训练、MLA、无辅助损失负载均衡等方面取得突破。

  • 支持超长上下文:通过 YaRN 方法,模型能够处理超长文本,拓展了应用场景。

  • 开源共享:作为完全开源的模型,为研究者和开发者提供了宝贵的资源,推动了 AI 社区的发展。

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

### DeepSeek 模型架构概述 DeepSeek是一款基于Transformer架构的大规模语言模型,其设计旨在提升自然语言处理任务中的表现力和灵活性[^1]。该模型采用了多层自注意力机制来捕捉输入序列中的复杂依赖关系,并通过位置编码使得模型能够感知到单词的位置信息。 对于具体的架构细节,在官方文档和技术报告中提到,DeepSeek Math作为专门针对数学推理优化的一个版本,继承并扩展了标准版DeepSeek LLM的基础结构,经过特定领域的两阶段训练进一步增强了数理逻辑推导的能力[^2]。 此外,为了提高计算效率以及适应不同应用场景的需求,DeepSeek引入了先进的模型蒸馏技术。这种方法允许从小型化的学生网络中复制教师网络的关键特征表示,从而获得高性能的同时降低了硬件需求。例如,DeepSeek-R1-Distill系列展示了如何有效地将大型预训练模型的知识传递给更紧凑的变体,使其能够在保持高水平准确性的情况下运行于资源有限的设备之上[^3]。 虽然无法直接提供一张完整的DeepSeek模型架构图,但从上述描述可以看出,此模型遵循典型的Transformers框架布局,包括但不限于嵌入层、多个堆叠式的编码器/解码器模块以及最终用于预测输出的概率分布生成组件。以下是简化后的DeepSeek模型架构示意: ```plaintext +-------------------+ | Input Embedding | +---------+--------+ | +---------v--------+ | Positional Encoding| +---------+--------+ | +---------v--------+ | Multi-head Self-Attention Layers (N times) | <- Encoder Stack +---------+--------+ | +---------v--------+ | Feed Forward Neural Network | +---------+--------+ . . More Stacks... . +---------v--------+ | Output Layer | +-------------------+ ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值