一文彻底搞懂深度学习 - 优化器(Optimizer)

在深度学习中,优化器(Optimizer)是一个核心概念,它负责调整神经网络的权重和偏置,以便最小化损失函数,从而提高模型的准确性和性能。

****常见的优化器,包括梯度下降系列(批量梯度下降BGD、随机梯度下降SGD、小批量梯度下降MBGD)、动量法、NAG、Adagrad、RMSprop以及Adam等,它们的核心目标是通过调整学习率、利用梯度信息等手段,高效地最小化损失函数,从而优化和提升神经网络模型的性能。

Optimizer

一、优化器

****优化器(Optimizer)是什么?****优化器是一种特定的深度学习算法,用于在训练深度学习模型时调整权重和偏差,从而更新神经网络参数以最小化某个损失函数。

损失函数衡量了模型的预测值与真实值之间的差异,而优化器的目标是通过调整网络参数来最小化这个差异****,从而提高模型的准确性和性能。****

为什么需要优化器?由于目标函数拥有众多参数且结构复杂,直接寻找最优参数变得十分困难。因此,我们需要借助优化器,它能够********逐步调整参数,确保每次优化都朝着最快降低损失的方向前进。

什么优化器的调参?优化器调参即根据模型实际情况,调整学习率、动量因子、权重衰减等超参数,以优化训练效果和性能。需通过经验和实验找最佳组合****,实现快速收敛、减少摆动、防止过拟合。****

  1. 学习率:过大的学习率可能导致模型无法收敛,而过小的学习率则会使训练过程变得缓慢。因此,需要根据实际情况选择合适的学习率。

  2. 动量因子:对于使用动量的优化器,动量因子的选择也很重要。动量因子决定了过去梯度对当前梯度的影响程度。合适的动量因子可以加速收敛,减少摆动

  3. 权重衰减:权重衰减是一种正则化方法,用于防止模型过拟合。在优化器中,可以通过添加权重衰减项来减少模型的复杂度。

二、常用的优化器

******常用的优化器有哪些?******常用的优化器主要包括SGD、BGD、Momentum、NAG、Adagrad、RMSprop、Adadelta和Adam等,它们通过不同的策略调整学习率和梯度方向,以实现快速、稳定的模型训练。

1. 随机梯度下降(SGD)

  • 定义:每次迭代仅使用一个训练样本来计算损失函数的梯度,并更新模型参数。

  • 特点适用于大规模数据集和在线学习场景。

2. 批量梯度下降(BGD)

  • 定义:每次迭代使用全部训练数据来计算损失函数的梯度,并更新模型参数。

  • 特点适合于小规模数据集和需要精确估计梯度的场景。

3. 动量法(Momentum)

  • 定义:通过引入一个累计梯度的指数加权平均,将过去的梯度信息考虑进当前的参数更新中,从而增加稳定性和提高训练效率。

  • 特点常用于改进随机梯度下降(SGD)和小批量梯度下降(MBGD)等优化器。

4. NAG(Nesterov Accelerated Gradient)

  • 定义:在动量法基础上进行改进的优化算法,先按照之前的动量更新参数,再在这个新的位置计算梯度,并根据此调整更新方向。

  • 特点可以减少摆动,加快收敛速度。

5. Adagrad

  • 定义:一种自适应梯度下降的优化器,对不同参数使用不同的学习率。对于更新频率较低的参数施以较大的学习率,对于更新频率较高的参数使用较小的学习率。

  • 特点适用于大规模数据集和特征提取任务。

6. RMSprop

  • 定义:对Adagrad的一种改进,根据梯度的历史信息来自适应地调整学习率。使用梯度的指数加权平均而不是累积和来计算学习率。

  • 特点适用于处理非稀疏数据和长期依赖的问题。

7. Adadelta

  • 定义:对Adagrad的另一种改进,通过计算梯度平方的指数加权移动平均来避免学习率趋于0的问题,同时简化了计算。

  • 特点适用于需要长时间训练的大型神经网络和需要稳定学习率的任务。

8. Adam

  • 定义:结合了AdaGrad和Momentum两种优化算法的优点,能够快速收敛并且减少训练时间。Adam优化器计算出每个参数的独立自适应学习率不需要手动调整学习率的大小

  • 特点适用于处理大规模数据和训练复杂模型。

为了帮助更多人(AI初学者、IT从业者)从零构建AI底层架构,培养Meta Learning能力;提升AI认知,拥抱智能时代。

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值