为什么百万级上下文理解如此重要?
传统的大语言模型在处理长文本时往往力不从心,通常只能处理几千到几万个token的文本。这严重限制了模型在代码仓库分析、长文档理解等实际应用场景中的表现。通义千问团队推出的Qwen2.5-1M系列模型,一举将上下文长度提升至100万tokens,这意味着模型可以一次性处理相当于一本中等长度小说的文本内容。
Qwen2.5-1M带来了哪些突破?
该系列包含两个开源模型(Qwen2.5-7B-Instruct-1M和Qwen2.5-14B-Instruct-1M)以及一个API访问模型(Qwen2.5-Turbo)。在长文本任务评测中,Qwen2.5-14B-Instruct-1M的表现甚至超越了GPT-4o-mini。特别是在RULER数据集上,整个Qwen2.5-1M系列的表现都超过了GPT-4,这充分展示了其在长文本处理方面的卓越能力。
核心技术创新是什么?
团队在训练和推理两个方面都做出了重要创新:
1.训练方面:采用了合成数据强化长程依赖、渐进式长度扩展等策略,有效降低了训练成本。同时使用多阶段监督微调,确保模型在短文本和长文本场景下都能保持良好表现。
2.推理方面:开发了免训练的长度外推方法,让模型无需额外训练就能处理更长的文本。通过稀疏注意力机制和引擎级优化,将百万token场景下的推理速度提升了3-7倍。
实际应用前景如何?
Qwen2.5-1M的发布为长文本处理开辟了新的可能。在代码分析、文档摘要、研究报告生成等场景中,模型可以一次性处理更大规模的输入,提供更全面的分析和更准确的输出。特别值得一提的是,开源了推理框架,这让开发者可以更经济高效地部署这些模型,大大降低了应用门槛。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓