PyTorch MNIST手写体识别:SwanLab可视化训练

MNIST手写体识别是深度学习、CV的“Hello World”,无数人从这个任务入门,进入深度学习的世界~

进阶请看:PyTorch猫狗分类

这篇文章我将带大家使用SwanLab(训练可视化)、PyTorch(深度学习框架)这两个开源工具,完成从数据集准备、代码编写、到模型训练的全过程。 [图片]

代码同时适用于纯CPU、英伟达GPU或Apple M1训练。

完整代码请直接跳转到2.9节。

实验过程:SwanLab - MNIST手写体识别 数据集:百度云 提取码: 89y2 两个开源库:SwanLabpytorch

1. 准备部分

在此之前,你需要确保你已经安装了Python。

1.1 什么是MNIST手写体识别

MNIST手写体识别任务是一个经典的计算机视觉问题,属于图像分类任务,目标是输入一个手写数字图像,AI模型可以正确预测数字是多少。 MNIST数据集包含70,000个手写数字图像,每个图像大小为28x28像素。这些图像分为两部分:60,000个训练集和10,000个测试集。 [图片]

1.2 安装Python库

需要安装下面这4个库:

shell复制代码torch
torchvision
swanlab>=0.3.2

安装命令:

复制代码pip install torch torchvision swanlab

1.3 创建文件目录

需要包含两个文件:

  1. train.py,它的作用训练模型
  2. MNIST文件夹,存放数据集。

MNIST数据集的下载有两种方式:一种是通过2.1中的代码下载(推荐),如果下载存在网络问题的话,则可以用我提供的百度云链接下载:百度云,提取码: 89y2。

[图片]

2. 训练部分

如果想直接看完整代码和效果,可直接跳转到第2.9。

2.1 载入MNIST数据集

训练部分的代码全部写在train.py中。 载入MNIST数据集分为三步:

  1. 下载MNIST数据集
  2. 将数据集分为训练集和验证集
  3. 封装到PyTorch DataLoader中,以供训练使用

下面的代码演示了这一过程:

python复制代码from torchvision.datasets import MNIST

# 下载MNIST训练集
dataset = MNIST(os.getcwd(), train=True, download=True, transform=ToTensor())

# 随机分为训练集和验证集, 训练集55000张,验证集5000张
train_dataset, val_dataset = utils.data.random_split(dataset, [55000, 5000])

# 写入Pytorch数据载入器中
train_loader = utils.data.DataLoader(train_dataset, batch_size=256, shuffle=True)
val_loader = utils.data.DataLoader(val_dataset, batch_size=1, shuffle=False)

ps:如果下载速度不给力的话,可以用我提供的百度云链接下载:百度云 提取码: 89y2。

目录结构是 根目录/MNIST/raw/...(下图所示的文件)。 在这里插入图片描述

2.2 载入ResNet18模型

模型我们直接选用经典的ResNet18,模型的具体原理本文不细说,重点放在工程实现上。 我们使用torchvision来创建1个resnet50模型,并载入预训练权重:

python复制代码import torchvision
from torchvision.models import ResNet18_Weights

model = torchvision.models.resnet18(weights=ResNet18_Weights.IMAGENET1K_V1)

因为MNIST是个1维图像和10分类任务(即输入一张图片,分类它是0~9这10个数字中的哪一个),而torchvision提供的resnet18默认是适配3维图像与1000分类,所以我们需要把模型的第一个卷积层的输入维度替换为1,全连接层的输出维度替换为10:\

python复制代码import torchvision
from torchvision.models import ResNet18_Weights
import torch

model = torchvision.models.resnet18(weights=ResNet18_Weights.IMAGENET1K_V1)

# 将模型的输入维度改为1,全连接层替换为10
model.conv1 = nn.Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
in_features = model.fc.in_features
model.fc = torch.nn.Linear(in_features, 10)

2.3 设置cuda/mps/cpu

如果你的电脑是英伟达显卡,那么cuda可以极大加速你的训练; 如果你的电脑是Macbook Apple Sillicon(M系列芯片),那么mps同样可以极大加速你的训练; 如果都不是,那就选用cpu:

python复制代码#检测是否支持mps
try:
    use_mps = torch.backends.mps.is_available()
except AttributeError:
    use_mps = False

#检测是否支持cuda
if torch.cuda.is_available():
    device = "cuda"
elif use_mps:
    device = "mps"
else:
    device = "cpu"

将模型加载到对应的device中:

python

复制代码model.to(torch.device(device))

2.4 初始化SwanLab

在训练中我们使用swanlab库作为实验管理与指标可视化工具。 SwanLab是一个类似Wandb(Weights and Biases)的在线开源训练可视化工具,能够在远程、在网页上看指标。除了能记录指标,还能自动记录训练的logging、硬件环境、Python环境、训练时间等信息。 如何入门SwanLab可以看这个文档:🚀快速开始 - SwanLab,也可以跟着本文往下走。

初始化并设置超参数 swanlab库使用swanlab.init记录超参数、实验名、实验介绍:

python复制代码import swanlab
# 初始化swanlab
run = swanlab.init(
    project="MNIST-example",
    experiment_name="ResNet18",
    config={
        "model": "ResNet18",
        "optim": "Adam",
        "lr": 1e-4,
        "batch_size": 256,
        "num_epochs": 10,
        "device": device,
    }

这里我们设置的超参数分别是:模型使用resnet18,学习率lr为1e-4,批大小batch_size为256,轮数epoch为20,分类数为10,设备为2.3检测到的设备值。 这里swanlab干了三件事:

  1. 创建了1个名为MNIST的项目
  2. 创建了1个名为ResNet18的实验,项目和实验是类似文件夹和文件的关系,每次训练都会产生一个新的实验
  3. 将超参数上传到实验中,被记录下来

跟踪训练指标 在训练MNIST的过程中,我们最关心的指标就是训练集的损失值loss和验证集的准确率acc,我们用SwanLab在记录这些指标,生成可视化的折线图。 下面是一个简单的记录loss的常见用法,具体的使用案例见2.6和2.7。

python复制代码for data in train_dataloader:
    ...
    swanlab.log({"loss": loss})

2.5 设置优化器和损失函数

设置损失函数为交叉熵损失,优化器为Adam。

python复制代码criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=run.config.lr)

交叉熵损失是常用于图像分类任务的损失函数,Adam是一种经典的优化器。

2.6 定义训练函数train

我们定义1个训练函数train:

python复制代码def train(model, device, train_dataloader, optimizer, criterion, epoch, num_epochs):
    model.train()
    # 1. 循环调用train_dataloader,每次取出1个batch_size的图像和标签
    for iter, (inputs, labels) in enumerate(train_dataloader):
        inputs, labels = inputs.to(device), labels.to(device)
        optimizer.zero_grad()
        # 2. 传入到resnet18模型中得到预测结果
        outputs = model(inputs)
        # 3. 将结果和标签传入损失函数中计算交叉熵损失
        loss = criterion(outputs, labels)
        # 4. 根据损失计算反向传播
        loss.backward()
        # 5. 优化器执行模型参数更新
        optimizer.step()
        print('Epoch [{}/{}], Iteration [{}/{}], Loss: {:.4f}'.format(epoch, num_epochs, iter + 1, len(train_dataloader),
                                                                      loss.item()))
        # 6. 每20次迭代,用SwanLab记录一下loss的变化
        if iter % 20 == 0:
            swanlab.log({"train/loss": loss.item()})

训练的逻辑很简单:我们循环调用train_dataloader,每次取出1个batch_size的图像和标签,传入到resnet18模型中得到预测结果,将结果和标签传入损失函数中计算交叉熵损失,最后根据损失计算反向传播,Adam优化器执行模型参数更新,循环往复。 在训练中我们最关心的指标是损失值loss,所以我们用swanlab.log跟踪它的变化。

2.7 定义测试函数test

我们定义1个测试函数test:

python复制代码def test(model, device, val_dataloader, epoch):
    model.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        # 1. 循环调用val_dataloader,每次取出1个batch_size的图像和标签
        for inputs, labels in val_dataloader:
            inputs, labels = inputs.to(device), labels.to(device)
            # 2. 传入到resnet18模型中得到预测结果
            outputs = model(inputs)
            # 3. 获得预测的数字
            _, predicted = torch.max(outputs, 1)
            total += labels.size(0)
            # 4. 计算与标签一致的预测结果的数量
            correct += (predicted == labels).sum().item()
    
        # 5. 得到最终的测试准确率
        accuracy = correct / total
        # 6. 用SwanLab记录一下准确率的变化
        swanlab.log({"val/accuracy": accuracy}, step=epoch)

测试的逻辑同样很简单:我们循环调用test_dataloader,将验证集的图像传入到当前训练的resnet18模型中得到预测结果,与标签进行对比,计算整体的准确率。 在测试中我们最关心的指标是准确率accuracy,所以我们用swanlab.log跟踪它的变化。

2.8 保存模型权重文件

我们使用train.save进行模型的权重保存,保存到checkpoint文件夹下。

python复制代码# 如果不存在checkpoint文件夹,则自动创建一个
if not os.path.exists("checkpoint"):
    os.makedirs("checkpoint")
torch.save(model.state_dict(), 'checkpoint/latest_checkpoint.pth')

至此,我们完成已完成了绝大多数的代码,现在是时候将它们组合起来,开始训练!

2.9 完整训练代码

我们一共训练10轮,每2轮进行测试,并在最后保存权重文件:

python复制代码import os
import torch
from torch import nn, optim, utils
import torch.nn.functional as F
import torchvision
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor
from torchvision.models import ResNet18_Weights
import swanlab

def train(model, device, train_dataloader, optimizer, criterion, epoch, num_epochs):
    model.train()
    # 1. 循环调用train_dataloader,每次取出1个batch_size的图像和标签
    for iter, (inputs, labels) in enumerate(train_dataloader):
        inputs, labels = inputs.to(device), labels.to(device)
        optimizer.zero_grad()
        # 2. 传入到resnet18模型中得到预测结果
        outputs = model(inputs)
        # 3. 将结果和标签传入损失函数中计算交叉熵损失
        loss = criterion(outputs, labels)
        # 4. 根据损失计算反向传播
        loss.backward()
        # 5. 优化器执行模型参数更新
        optimizer.step()
        print('Epoch [{}/{}], Iteration [{}/{}], Loss: {:.4f}'.format(epoch, num_epochs, iter + 1, len(train_dataloader),
                                                                      loss.item()))
        # 6. 每20次迭代,用SwanLab记录一下loss的变化
        if iter % 20 == 0:
            swanlab.log({"train/loss": loss.item()})

def test(model, device, val_dataloader, epoch):
    model.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        # 1. 循环调用val_dataloader,每次取出1个batch_size的图像和标签
        for inputs, labels in val_dataloader:
            inputs, labels = inputs.to(device), labels.to(device)
            # 2. 传入到resnet18模型中得到预测结果
            outputs = model(inputs)
            # 3. 获得预测的数字
            _, predicted = torch.max(outputs, 1)
            total += labels.size(0)
            # 4. 计算与标签一致的预测结果的数量
            correct += (predicted == labels).sum().item()
    
        # 5. 得到最终的测试准确率
        accuracy = correct / total
        # 6. 用SwanLab记录一下准确率的变化
        swanlab.log({"val/accuracy": accuracy}, step=epoch)
    

if __name__ == "__main__":

    #检测是否支持mps
    try:
        use_mps = torch.backends.mps.is_available()
    except AttributeError:
        use_mps = False

    #检测是否支持cuda
    if torch.cuda.is_available():
        device = "cuda"
    elif use_mps:
        device = "mps"
    else:
        device = "cpu"

    # 初始化swanlab
    run = swanlab.init(
        project="MNIST-example",
        experiment_name="ResNet18",
        config={
            "model": "ResNet18",
            "optim": "Adam",
            "lr": 1e-4,
            "batch_size": 256,
            "num_epochs": 10,
            "device": device,
        },
    )

    # 设置MNIST训练集和验证集
    dataset = MNIST(os.getcwd(), train=True, download=True, transform=ToTensor())
    train_dataset, val_dataset = utils.data.random_split(dataset, [55000, 5000])

    train_dataloader = utils.data.DataLoader(train_dataset, batch_size=run.config.batch_size, shuffle=True)
    val_dataloader = utils.data.DataLoader(val_dataset, batch_size=8, shuffle=False)

    # 初始化模型
    model =torchvision.models.resnet18(weights=ResNet18_Weights.IMAGENET1K_V1)
    # 让模型适配MNIST数据集
    model.conv1 = nn.Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
    in_features = model.fc.in_features
    model.fc = torch.nn.Linear(in_features, 10)
    model.to(torch.device(device))

    # 定义损失函数和优化器
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=run.config.lr)

    # 开始训练和测试循环
    for epoch in range(1, run.config.num_epochs+1):
        swanlab.log({"train/epoch": epoch}, step=epoch)
        train(model, device, train_dataloader, optimizer, criterion, epoch, run.config.num_epochs)
        if epoch % 2 == 0: 
            test(model, device, val_dataloader, epoch)

    # 保存模型
    # 如果不存在checkpoint文件夹,则自动创建一个
    if not os.path.exists("checkpoint"):
        os.makedirs("checkpoint")
    torch.save(model.state_dict(), 'checkpoint/latest_checkpoint.pth')

2.10 开始训练!

实验过程可看这个SwanLab网页:SwanLab - MNIST 在开始运行时,如果你是第一次使用SwanLab,会提示你要输入SwanLab API Key。 这里的操作也非常简单,去SwanLab官网登录一下账号,在【设置】页面复制API Key,粘贴过来就可以: [图片] [图片]

然后,我们运行train.py: 在这里插入图片描述

这时候你会在看到在开头会给到你两个链接,我们点击第一个,里面包含了这个项目的信息和一个对比实验表格: 在这里插入图片描述

我们点开1个进行中的实验,会看到loss和acc整体的变化曲线: 在这里插入图片描述

切换到实验卡片,这里记录了实验的各种信息,包括超参数、最终的实验指标、实验状态、训练时长、Git仓库链接、主机名、操作系统、Python版本、硬件配置等等。 在这里插入图片描述

可以看到我们最终训练的准确率是98.66%,提高到99%以上应该不困难!可以把这个实验作为你的baseline,去尝试不同的trick来提高准确率~

在这里插入图片描述

至此我们完成了模型的训练和测试,得到了1个表现非常棒的猫狗分类模型,权重保存在了checkpoint目录下。 至此,我们完成了用SwanLab、PyTorch这两个开源工具训练1个猫狗分类模型的全部过程,更多想了解的可以参考相关链接或评论此文章。 如果有帮助,请点个赞和收藏吧~

最后的最后

感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。

因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值