🎈前言
近来刷到不少大模型的文章,趁着五一拿ChatGLM3-6B搞一个知识库练练手,但是没有独显真的是硬伤,一路处处踩雷。总算是搞出来了一个还过得去的知识库,响应速度在能接受的范围内,这里记录一下,也希望能帮助想要尝试大模型的各位避下雷。
📄软硬件配置
硬件
- CPU(13th Inter core i5-13400):10核16线程
- 内存:32GB
- 显卡:核显
- 固态硬盘:1T
软件
- ChatGLM3-6B(清华出品,号称10B以内最能打的预训练模型):hf-mirror.com/THUDM/chatg…
- ChatGLM.CPP(类似 llama.cpp 的量化加速推理方案,实现笔记本上实时对话):github.com/li-plus/cha…
- Langchain-Chatchat(检索增强生成(RAG)大模型知识库):github.com/chatchat-sp…
- bge-large-zh-v1.5(向量模型):hf-mirror.com/BAAI/bge-la…
- faiss(向量数据库):安装Langchain-Chatchat时会安装
模型比较大,下载速度比较慢
🎥效果展示
动图左上角为量化后的ChatGLM3-6B
,旁边为Langchain-Chatchat
LLM对话
首次对话速度会慢点,之后对话速度会快很多
知识库问答
Docker配置启动
不使用WSL 设置CPU、内存等配置的大小
docker-compose.yml
yaml复制代码# 安装docker-compose:pip install --upgrade pip;pip install docker-compose
# 部署命令:docker-compose up -d
# 关闭卸载:docker-compose down
# 描述 Compose 文件的版本信息
version: '3'
# 定义服务,可以多个
services:
chatglm-cpp: # 服务名称
image: python:3.11-slim
container_name: chatglm-cpp # 容器名称
# 网络模式:host使用宿主机的ip配置,不针对容器单独分配
# network_mode: "host"
ports:
- 7860:7860
volumes: # 目录挂载
- ./chatglm.cpp:/app/chatglm.cpp
command: tail -f /dev/null
目录
python复制代码└── project
├── chatglm.cpp # chatglm.cpp源码
│ ├── chatglm_cpp # 安装chatglm.cpp生成的目录
│ ├── chatglm_cpp-0.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl # 启动所需要的whl
│ ├── bge-large-zh-v1.5 # bge-large-zh-v1.5目录
│ │ ├── pytorch_model.bin # 模型
│ │ └── ...
│ ├── Langchain-Chatchat # Langchain-Chatchat源码
│ │ ├── configs # 配置文件目录
│ │ └── ...
│ ├── models # 模型
│ │ ├── chatglm3-6b # chatglm3-6b目录
│ │ ├── chatglm3-ggml.bin # 使用chatglm_cpp量化后的模型
│ │ └── ...
│ └── ...
└── docker-compose.yml
启动
复制代码docker-compose up -d
💾安装Chatglm.cpp
bash复制代码cd /app/chatglm.cpp
python3 -m pip install -U pip
# 安装需要的组件
python3 -m pip install torch tabulate tqdm transformers accelerate sentencepiece
# 量化模型
python3 /app/chatglm.cpp/chatglm_cpp/convert.py -i /app/chatglm.cpp/models/chatglm3-6b -t q4_0 -o /app/chatglm.cpp/models/chatglm3-ggml.bin
# 安装whl,这个文件可以在github上下载自己需要的
pip install chatglm_cpp-0.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
# 安装API所需要的组件
pip install 'chatglm-cpp[api]'
# !!!着重注意,启动需要的pydantic版本为2.7.1。而Langchain需要的pydantic是1.10.11,两个版本是冲突的
pip install pydantic==2.7.1
cd /app/chatglm.cpp/chatglm_cpp
# OPEN API模式启动
MODEL=../models/chatglm3-ggml.bin uvicorn chatglm_cpp.openai_api:app --host 127.0.0.1 --port 8000
安装LangChain
bash复制代码cd /app/chatglm.cpp/Langchain-Chatchat
# 安装Langchain-Chatchat
pip install -r requirements.txt
pip install -r requirements_api.txt
pip install -r requirements_webui.txt
# 修改配置文件之前执行这个命令
python copy_config_example.py
修改/app/chatglm.cpp/Langchain-Chatchat/configs/model_config.py中以下内容:
"openai-api": {
"model_name": "gpt-4",
"api_base_url": "http://127.0.0.1:8000/v1",
"api_key": "123",
"openai_proxy": "http://127.0.0.1:8000",
}
"embed_model": {
...
"bge-large-zh-v1.5": "/app/chatglm.cpp/bge-large-zh-v1.5",
...
}
修改/app/chatglm.cpp/Langchain-Chatchat/configs/server_config.py中的8501端口号为7860
# 降级
pip install pydantic==1.10.11
python startup.py -a --model-name openai-api
🔍初始化FAISS向量库
bash复制代码cd /app/chatglm.cpp/Langchain-Chatchat
python init_database.py --recreate-vs
📖LangChain + Chatglm3-6B + bge-large-zh + FAISS = 知识库
开两个命令行窗口,LangChain-Chatchat
通过open api
的方式接入Chatglm3-6B
ini复制代码# 窗口1启动Chatglm3-CPP
cd /app/chatglm.cpp/chatglm_cpp
# !!!着重注意,启动chatglm需要的pydantic版本为2.7.1。而Langchain需要的pydantic是1.10.11,两个版本是冲突的
pip install pydantic==2.7.1
MODEL=../models/chatglm3-ggml.bin uvicorn chatglm_cpp.openai_api:app --host 127.0.0.1 --port 8000
bash复制代码# 窗口2启动LangChain
cd /app/chatglm.cpp/Langchain-Chatchat
# !!!着重注意,启动chatglm需要的pydantic版本为2.7.1。而Langchain需要的pydantic是1.10.11,两个版本是冲突的
pip install pydantic==1.10.11
python startup.py -a --model-name openai-api
💌最后
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
资源分享
大模型AGI学习包
资料目录
- 成长路线图&学习规划
- 配套视频教程
- 实战LLM
- 人工智能比赛资料
- AI人工智能必读书单
- 面试题合集
《人工智能\大模型入门学习大礼包》,可以扫描下方二维码免费领取!

1.成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。
2.视频教程
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,其中一共有21个章节,每个章节都是当前板块的精华浓缩。
3.LLM
大家最喜欢也是最关心的LLM(大语言模型)
《人工智能\大模型入门学习大礼包》,可以扫描下方二维码免费领取!
