控制目标
为了计算最佳输入力矩,应建立主车与前车之间的状态关系。车辆跟随模型能够反映车间状态,因此可以利用间距控制规律的应用框架来构建。
车辆跟随模型的状态变量为相对距离和相对速度,它们也被视为主车辆和前车之间的车间状态。在主车的跟车过程中,车间状态为变量,相对距离或者相对速度会随时间的变化而变化。因此,相对距离的误差和相对速度的误差可以被定义为:
(2.14)
车辆队列控制的目标是跟随车能够达到和领导者相同的速度,同时能够持续保持由选取的间距策略决定的任何连续车辆之间的期望间隙:
(2.15)
控制理论基础知识
模型预测控制
Richalet、Rault、Testud和Papon(1976)第一次提出将模型预测控制用作过程控制[31],在当时,已经有人提出了MPC的概念,例如,Propoi(1963)提出,使用线性规划的方法作用于对控制有硬约束的线性系统。然而,早期倾向于单独使用MPC解决工业上的控制问题,对于现有的控制设计技术,如线性二次控制,没有得到广泛的应用,认为它们不能有效解决约束、非线性和不确定性所引起的问题,导致当时的模型预测控制主要只应用于石油化工行业和工艺行业。
之后,卡特勒和拉马克,1980等人在MPC的框架下提出采用有限时域脉冲响应(线性)模型、二次成本函数和输入和输出约束,该模型允许使用最小二乘法进行线性估计,有效求解了开环最优控制问题[32]。1986年,加西亚&Morshedi利用二次规划精确地求解系统线性、二次代价函数,通过这种方式,可以允许临时违反某些约束,获得令人满意地控制状态集。这在之后被划分为硬约束和软约束几个层级,解决了实时变化的控制结构导致的问题,这极大推动了模型预测控制在工业行业中的应用。
近二十年,MPC的研究者在实践过程中开始意识到稳定性的重要,他们在理论上并没有解决稳定性问题。而后,学术研究开始了对稳定性的理论研究。由于最初没有使用李雅普诺夫理论,因此线性无约束系统的模型预测控制稳定性问题必须在线性分析的限制性框架内加以解决。而后,Garcma等人研究了当系统是线性的、成本二次的和硬约束不存在时,控制和成本范围和成本参数对稳定性的影响[33]。1990年代开始,更多学者开始关注模型预测控制的稳定性问题。Keerthi和Gilbert(1988)指出[34],采用终端约束时,可以应用Lyapunov稳定性理论,在时变的、约束的、非线性的、离散时间系统中,建立模型预测控制的稳定性。
以上是模型预测控制在稳定性研究方向上的发展,而且模型预测控制也逐渐运用在车辆队列控制上,并取得了一定的控制效果。
事实证明,在交通行业中,车辆排成行对于提高燃油经济性,道路通行能力和驾驶舒适性非常有效。模型预测控制(MPC)在文献中广泛用于排控制以实现某些目标,例如在跟随前导车辆的同时安全地减小连续车辆之间的距离。
模型预测控制是对于被控模型和环境不确定性的折中妥协,是一种优化控制的算法。它具有处理多约束的特性,对模型没有限定,能够解决非线性模型问题,并且能够取得良好的控制效果,近年来被应用在车辆跟随问题以及车辆队列稳定性分析的问题上。它与离散最优控制算法不同,它不是采用一个不变的全局优化目标,而是采用时间向前滚动式的有限时域的优化策略,它比建立在理想条件下的最优控制更加实际有效。
模型预测控制的基本思想就在于,它利用一个已有的模型、系统当前的状态和未来的控制量去预测系统未来的输出。由于未来的控制量是未知的,还需要根据一定的优化条件进行优化求解,以得到未来的控制量序列。在每一个控制周期结束以后,系统根据当前实际状态重新预测系统未来输出。
模型预测控制在实现过程中有3个关键步骤,分别是预测模型、滚动优化和反馈矫正。
①预测模型:预测模型是模型预测控制的基础。其主要功能是根据对象的历史信息和未来输入,预测系统未来的输出。对预测模型的形式没有做严格的限定,状态方程、传递函数这类传统的模型都可以作为预测模型。
②滚动优化:模型预测控制通过某一性能指标的最优来确定控制作用,但优化不是一次离线进行,而是反复在线进行。这就是滚动优化的含义,也是模型预测控制区别于传统最优控制的根本点。
③反馈校正:为了防止模型失配或环境干扰引起控制对理想状态的偏离,在新的采样时刻,首先检测对象的实际输出,并利用这一实时信息对基于模型的预测结果进行修正,然后再进行新的优化。
模型预测控制有五个控制参数:采样时间、预测范围、控制层位、约束、权重。
(1)采样时间:如果采样时间太大,则出现干扰时,控制器将无法足够快地对干扰做出反应,相反,如果采样时间太短,则控制器对干扰和设定值变化地反应会更快,但这会导致过多的计算负荷。为了在计算量和性能之间找到适当的平衡,确定本文采样时间为0.1s。
(2)预测范围:预测的未来时间步长的数量称为预测范围,它表示控制器对未来的预测程度。预测步长过长,会造成不必要的预测,浪费计算量;预测步长过短,会导致反应过慢。
(3)控制范围:设置为预测范围的10%到20%,过长会增加计算复杂度。
(4)约束:约束可以分为软约束和硬约束两种。控制器控制不能违反硬约束,但可以违反软约束。将输入和输出都加上硬约束对不利于算法求解优化问题,可能特定情况下会造成无解的结果。
(5)权重:MPC有多个目标,在车队控制中,不仅希望能够使输出尽可能接近其设定值,还希望能够使控制动作平稳,则可以通过设定目标之间的相对权重进行权衡。
(a)
(b)
图2.1 一般模型预测控制概念
其中,图2.1(a)指控制器在该时刻解决区间上的最佳控制问题;图2.1(b)表示控制器在下一个时刻解决区间的下一个最佳控制问题。
控制目标
车辆队列控制的目标能够满足以下控制性能:
(1)实现车间距离零稳态性能,使能够持续保持由选取的间距策略决定的任何连续车辆之间的期望间隙:
(4.9)
实现速度零稳态性能,跟踪领导者的速度,使本车和领头车的速度误差最小:
(4.10)
实现加速度变化零稳态性能,确保车辆平稳运行:
(4.11)
(2)实现闭环车队系统的渐近稳定性。
(3)实现车队队列弦稳定性,避免因领队或其他干扰使得车间的间隙误差沿着队列向后逐渐扩大。
领头车加速工况下的仿真结果分析
PF和PLF信息流拓扑结构下仿真结果分析
将领头车的加速度大小在仿真2s到4s间设置为1m/s2,其他时间设置为0,仿真验证加速情况下车辆1到车辆5的状态变化情况。假设车辆的初始位置依次分别为[0,0]、[-20,0]、[-40,0]、[-60,0]、[-80,0]、[-100,0],所有车的初速度设置为15m/s2,仿真结果如下:
(a)PF结构下车辆的速度变化 (b)PLF结构下车辆的速度变化
(c)PF结构下车辆的位置变化 (d)PLF结构下车辆的位置变化
(e)PF结构下车辆的加速度变化 (f)PLF结构下车辆的加速度变化
(g)PF结构下车辆的间距误差变化 (h)PLF结构下车辆的间距误差变化
图5-1 领头车加速工况下,PF和PLF信息流拓扑结构下各车状态变化
如图所示,给予领头车加速信号后,车辆通过通信结构接收到前车或前车及领头车的信息,从而对自身车的未来状态进行预测以及控制。从图5-1的(a)和图5-1的(b)可知,模型预测控制在PF信息流拓扑结构和PLF信息流通信拓扑结构下都有一定的控制效果,在领头车的速度和加速度发生变化的时候,能够及时地跟进前车速度,并且稳定与前车的期望间距,并将间距误差控制在1m以内。 将图5-1的(g)与图5-1的(h)对比可以得知,PLF信息流拓扑结构下车辆队列的弦稳定性控制效果要好于PF信息流拓扑结构下的控制效果。基于PLF信息流拓扑结构的模型预测控制方法可以在6秒左右达到队列稳定控制的效果,而在同一输入状况下,基于PF信息流拓扑结构的模型预测控制要在7秒左右才能达到稳定并近似达到理想车间距。在图5-1的(h)中,可以看到车间距误差随着队列传播逐渐减小,这一点在上一节中也得以证明,PLF结构下可以更好的实现队列稳定性控制。
同时,两种信息流拓扑结构下,单辆车的单步控制平均解算时间如下图所示:
(a)TPF每辆车平均单步控制计算时长 (b)TPLF每辆车平均单步控制计算时长
图5-2 领头车加速工况下,TPF和TPLF结构下车辆均步控制量计算时长
图5-2给出了领头车加速工况下车辆平均每步控制量计算时长。在本文提出的算法求解过程中,运用了内点法的求解方法,有效降低了求解的计算量,减少了非线性优化问题的解算时间,提高了车辆队列控制的实时性效果。观察图5-3,可以直观看到第一辆车解算所需要的时间最长,且PLF信息流拓扑结构相较于PF信息流拓扑结构的解算时间更长。这是由于PLF信息流拓扑结构不止有前车的信息,还增加了领航车的信息,扩大了信息量和控制量,但从整体来说,两者均基本满足实时控制要求[35]。综上所述,基于PLF信息流拓扑结构的模型预测控制在领头车加速的工况下,控制效果更好。
PLF信息流拓扑结构下车辆切入切出仿真结果分析
工况一:有车辆切入。
以下进行车辆切入工况下的PLF信息流拓扑结构下的仿真。仿真情形为:设置固定车间间距为10m,将领头车的加速度大小在仿真1s到2s间设置为1m/s2,其他时间设置为0,假设车辆的初始位置依次分别为[0,0]、[-10,0]、[-20,0]、[-30,0]、[-40,0],所有车的初速度设置为20m/s,且在第2s时刻,编号为1的车和编号为3的车中间会插入一辆车速为20 m/s的车,与其他四辆车形成新的队列,且这辆车在第2s时刻插入时,与编号为1的车间间距为3m。仿真结果如下:
(a)车辆速度变化 (b)车辆位置变化
(c)车辆力矩变化 (d)车辆加速度变化
(e)车间间距误差变化
图5-6 车辆切入工况下,基于PLF信息流拓扑结构的各车状态变化
由图5-6(a)可知,在有车辆汇入时,该车与跟随车会立马减速,始终与前车保持期望间距,保证安全性;由图5-6(e)可知,车间距在车辆汇入时,会产生较大间距误差,随后间距误差会不断减小,以及在2s左右趋于0,则该算法能够使车队快速达到稳定平衡的效果。但通过观察图5-6(c)和图5-6(d)可知,算法会产生较大的加速度,这也是车队能快速达到稳定的原因之一。
车辆3和车辆4的在PLF信息流拓扑结构下的每步控制量解算时长散点图如下:
(a)车辆3每步控制量解算时长
(b)车辆4每步控制量解算时长
图5-7 车辆切入工况下,基于PLF信息流拓扑结构的各车状态变化
从图5-7(a)和(b)可以看出,当车辆前方有车切入时,会增加控制量解算时长。在仿真时间1s-10s时,单步控制量解算时长普遍大于0.1s,不能满足实时性控制要求。说明在速度、距离信息与理想偏差较大时,该非线性求解算法会造成较大的解算时长,不利于实时性的控制。
工况二:有车辆驶出。
以下进行队列有车辆切出工况下的PLF信息流拓扑结构下的仿真。仿真情形为:设置固定车间间距为10m,将领头车的加速度大小在仿真1s到6s间设置为1m/s2,其他时间设置为0,假设车辆的初始位置依次分别为[0,0]、[-10,0]、[-20,0]、[-30,0]、[-40,0]、[-50,0]、[-60,0],所有车的初速度设置为20m/s,且在第4s时刻,编号为3的车和编号为5的车中间会驶出4号车,剩下六辆车将形成新的队列。仿真结果如下:
(a)车辆速度变化 (b)车辆位置变化
(c)车辆力矩变化 (d)车辆加速度变化
(e)车间间距误差变化
图5-8 车辆驶出工况下,基于PLF信息流拓扑结构的各车状态变化
由图5-8(a)可知,在有车辆驶出时,该车的跟随车会立马加速,加速到与前车保持期望间距,保证队列稳定性;由图5-8(e)可知,车间距在车辆驶出时,会产生较大间距误差,但随着跟随车加速前进,会使间距误差会不断减小,以及在5s左右趋于0,则该算法能够使车队快速达到稳定平衡的效果。同样,通过观察图5-8(c)和图5-8(d)可知,在车辆驶出工况中,算法会产生较大的加速度,能够使车队能快速达到稳定。
车辆5和车辆6的在PLF信息流拓扑结构下的每步控制量解算时长散点图如下:
(a)车辆5每步控制量解算时长 (b)车辆6每步控制量解算时长
图5-9 车辆切入工况下,各车每步控制量解算时长散点图
从图5-9(a)和(b)可以看出,当车辆前方有车驶出时,同样会增加控制量解算时长。在仿真时间4s-12s时,单步控制量解算时长普遍大于0.1s,不能满足实时性控制要求。也说明了在速度、距离信息与理想速度、理想距离偏差较大时,该非线性求解算法会造成较大的解算时长,不利于实时性的控制。
结论
本文以非线性动力学模型为车队模型基础,以满足弦稳定性、闭环稳定性的充分条件为要求,以良好的跟踪性能为目标,对车辆队列模型预测控制方法进行了研究,主要研究工作与成果如下:
(1)根据车辆动力学模型,分别建立了车辆非线性动力学模型和线性化动力学模型,并以其为基础分别组建了异质车辆队列模型和匀质车辆队列模型,增加了建模的精度。
(2)以匀质车辆队列模型为基础,分析了车辆队列的闭环稳定性,得出了满足闭环稳定性的充分条件,设计了状态反馈模型预测控制算法。主要取得以下结论:利用Routh稳定判据,能够求解出线性车辆队列控制器的稳定区域,并能作为控制器参数设计的前提条件,保证控制器的闭环稳定性;状态反馈模型预测控制算法能够保证车辆队列的稳定跟踪性能,在短时间内有效减少车间距误差,并使其趋于0,使车辆达到期望车间距,并且单步平均计算时间在0.05s,小于0.1s的采样周期,满足实时性控制要求。
(3)针对目前车队控制研究模型不够精确的问题,考虑以非线性动力学模型为基础,提出了一种基于异质车辆队列的模型预测控制算法,并且应用Lyapunov稳定性理论,在建立的具有时变离散性质的控制系统中,通过对优化问题施加附加的约束条件,同时,分析车辆队列的渐进稳定性条件,并将其作为控制器参数设计的参考条件,以信息流拓扑结构为研究对象,提升车辆队列控制系统的稳定控制性能、响应时间等。
(4)在MATLAB环境中,搭建了仿真模型,分别在领头车加速、初始扰动和车辆切入切出工况下进行了仿真分析。仿真结果表明:在前车-领航者跟随式和双前车-领航者跟随式等四种信息流拓扑结构下都有良好的仿真效果,且在能够获取领航车状态信息的车辆队列中,能够表现出更好的鲁棒性;在受到初始干扰时,都能在短时间内回复到平衡状态;解算平均时间均在0.05s左右,小于0.1s的采样周期,满足实时性要求;在车辆切入和切出的状态下仍然能保持良好的队列稳定性。仿真和实验结果表明,该控制器在满足渐进稳定性和安全约束时具有良好的跟踪性能。
本文对异质车辆队列的控制研究已取得一定的成果,同时分析了系统的稳定性,推进了在实际中的应用进程,但距离实际应用还有一些距离,且还有一些问题需要深入研究和优化,主要包括以下几个方面:
(1)本文虽然考虑了风阻,但并未考虑路面条件等因素,可能会影响车辆动力学仿真结果,因为可以将更多的非线性因素考虑进来,还原真实的行车环境;
(2)本文在车间通信的结构下进行了仿真,但状态信息在传递时会发生通信延时甚至丢包的状况,需要进一步探讨研究。
(3)本文所研究内容尚且只进行了建模仿真,还需在实车中进行实验验证。