一、模型概述
多区域 SIS 模型是传染病动力学研究中用于描述疾病在不同地理区域或群体间传播的经典数学模型。该模型将总体人群划分为多个相互关联的区域,每个区域内个体分为易感者(S)、感染者(I)两类,不考虑免疫或长期患病等情况,个体在感染后经过一定时间康复再次变为易感者,如此循环往复,旨在刻画疾病跨区域传播的动态过程及其复杂特性。
二、基本假设与参数设定
- 基本假设
- 各区域内人口总数保持恒定,即不考虑出生、死亡以及迁移等因素对总人口规模的影响(后续可拓展考虑这些因素)。
- 疾病传播遵循一定概率规律,个体间接触均匀且充分混合,感染发生具有随机性。
- 个体从感染状态恢复为易感状态的时间(恢复期)服从特定分布,常用平均恢复时间来表征。
- 关键参数
- 传染率(β):表示单位时间内一个感染者能够有效传播给易感者的平均人数,反映疾病传播能力强弱,其值受病原体特性、环境卫生、社交行为模式等多种因素影响。不同区域间由于社会文化、经济水平、卫生条件差异,传染率可能存在显著不同。
- 恢复率(γ):即单位时间内感染者中康复并重新成为易感者的比例,取决于疾病自身病程及医疗干预水平等,各区域医疗资源配备与利用效率不同,恢复率也会有所变化。
- 区域间扩散系数(D):用于衡量感染者在不同区域间流动迁移导致疾病传播的程度,与交通便捷性、人员往来频率正相关,例如临近且交通便利的区域间扩散系数较大,反之则较小。
三、模型构建与方程推导
- 单区域 SIS 模型基础 对于单个孤立区域,设 S(t) 和 I(t) 分别表示 t 时刻该区域内易感者和感染者数量占总人口的比例,总人口数为 N,基于质量守恒定律与上述假设,可建立以下常微分方程组: 其中,项代表单位时间内因与感染者接触而新转化为感染者的易感者数量, 项则是单位时间内由感染状态恢复为易感状态的人数;相应, 项是新产生的感染者, 项为康复退出感染状态的个体。
- 多区域扩展模型 考虑将总体划分为 个区域,各区域间存在人员流动与疾病传播交互作用。引入区域间感染者流量变量 表示单位时间内从区域 i 流向区域 j 的感染者数量占区域 i 总人口的比例。则多区域 SIS 模型方程组拓展为: 对于区域 其中,额外项 综合考虑了其他区域流入本区域的感染者以及本区域感染者向其他区域流出的情况,通过调整扩散系数矩阵 D 来刻画区域间复杂的传播网络结构。
四、模型求解与数值模拟
- 解析求解困难 由于多区域 SIS 模型方程组为非线性偏微分方程组,除极特殊简单情形外,很难获得其解析解。通常借助数值计算方法进行求解,如欧拉法、龙格 - 库塔法等经典常微分方程数值积分算法,将连续时间变量离散化,迭代计算各时刻各区域 S(t) 和 I(t) 的值。
- 数值模拟流程
- 初始化:给定各区域初始时刻的易感者比例 和感染者比例 ,设定模型参数(传染率、恢复率、扩散系数等),确定时间步长 h 和模拟总时长 T。
- 迭代计算:按照选定数值算法,依据当前时刻各区域状态变量值及参数,更新下一时刻 ,重复此过程直至达到模拟终点 T。
- 结果输出与可视化:将模拟得到的不同时刻各区域感染者比例、易感者比例数据绘制成折线图、空间分布图等直观形式展示,便于分析疾病传播时空演变特征。