CVPR 2024 即插即用! CA:新注意力机制,助力分类 检测 分割涨点!

。为了更加清晰的描述CA注意力,这里先对SE block进行讨论。

3.1 Revisit SE Block

在结构上,SE block可分解为SqueezeExcitation 2步,分别用于全局信息嵌入和通道关系的自适应Re-weight。

Squeeze

在输入

的条件下,第

通道的squeeze步长可表示为:

式中,

是与第

通道相关的输出。

输入

来自一个固定核大小的卷积层,因此可以看作是局部描述符的集合。Sqeeze操作使模型收集全局信息成为可能。

Excitation

Excitation的目的是完全捕获通道之间的依赖,它可以被表述为:

其中

为通道乘法,

激活函数,

为变换函数生成的结果,公式如下:

这里,

是2个线性变换,可以通过学习来捕捉每个通道的重要性。

为什么SE Block不好?

SE Block虽然近2年来被广泛使用;然而,它只考虑通过建模通道关系来重新衡量每个通道的重要性,而忽略了位置信息,但是位置信息对于生成空间选择性attention maps是很重要的。因此作者引入了一种新的注意块,它不仅仅考虑了通道间的关系还考虑了特征空间的位置信息。

3

### 即插即用注意力机制概述 #### 背景介绍 深度学习领域中,注意力机制作为一种强大的工具,在提升模型性能方面发挥了重要作用。这些机制通常能够增强模型对输入数据特定部分的关注程度,从而提高预测准确性[^1]。 #### YOLOv9 中的残差注意力机制CVPR 2023 的研究中提到,YOLOv9 引入了一种即插即用模块——残差注意力机制(Residual Attention Mechanism)。这种机制结合了轻量化的特性以及高效的计算效率,特别适合应用于实时目标检测场景。它通过引入 Inverted Residual Mobile Block 来优化资源分配,减少冗余运算的同时保持高精度输出[^2]。 #### 常见类型的注意力机制及其特 以下是几种广泛使用的即插即用注意力机制: - **SE (Squeeze-and-Excitation)** SE 模块通过对全局信息建模来调整各个通道的重要性权重,进而强化重要特征并抑制不必要成分。这种方法简单易行且易于集成至现有架构之中[^3]。 - **CBAM (Convolutional Block Attention Module)** CBAM 同时考虑空间维度与信道维度上的依赖关系,并分别施加相应注意力建模操作。最终将两者叠加形成综合响应图谱指导后续处理过程[^4]。 - **ECA (Efficient Channel Attention)** ECA 提出了利用单一核大小的一维卷积代替传统全连接层构建紧凑高效版本的 channel-wise attention mechanism 。相比其他方案而言具备更低复杂度却能达到相近甚至超越的效果表现水平. - **SimAM** SimAM 是一种无需额外参数的设计思路下的型自相似性驱动式attention framework ,旨在捕捉不同尺度下对象间潜在关联模式以促进跨层次语义交互作用的发生发展变化规律探索发现之旅开启之门打开之时到来之际临近之前预热阶段正在进行当中呢朋友们大家好呀😊👋🏻
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值