【AI大模型应用开发】2.2 Function Calling连接外部世界 - 【实战】查询数据库

上篇文章我们学习了Function Calling的基本用法,本文我们更近一步,学习下怎样利用Function Calling将大模型与数据库打通。

知识背景:我算是对数据库的SQL语句很不熟悉,只会简单的单表操作,还不熟练,每次都得查半天。现在有了大模型应用,有了Function Calling,再也不用查半天资料才写一个SQL了,还能熟练地用多表查询了!

本文实战案例来自知乎的AGI课程。

0. 封装数据库查询接口

还是先本地定义一个查询数据库的接口,该接口接收SQL数据库操作语句,然后调用执行。

python代码解读复制代码# 创建数据库连接
import sqlite3

conn = sqlite3.connect(':memory:')
cursor = conn.cursor()

def ask_database(query):
    cursor.execute(query)
    records = cursor.fetchall()
    return records

1. 数据库的Functions怎么定义

示例代码:

python代码解读复制代码
#  描述数据库表结构
database_schema_string = """
CREATE TABLE orders (
    id INT PRIMARY KEY NOT NULL, -- 主键,不允许为空
    customer_id INT NOT NULL, -- 客户ID,不允许为空
    product_id STR NOT NULL, -- 产品ID,不允许为空
    price DECIMAL(10,2) NOT NULL, -- 价格,不允许为空
    status INT NOT NULL, -- 订单状态,整数类型,不允许为空。0代表待支付,1代表已支付,2代表已退款
    create_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP, -- 创建时间,默认为当前时间
    pay_time TIMESTAMP -- 支付时间,可以为空
);
"""

def get_sql_completion(messages, model="gpt-3.5-turbo-1106"):
    response = openai.chat.completions.create(
        model=model,
        messages=messages,
        temperature=0,  # 模型输出的随机性,0 表示随机性最小
        tools=[{  # 摘自 OpenAI 官方示例 https://github.com/openai/openai-cookbook/blob/main/examples/How_to_call_functions_with_chat_models.ipynb
            "type": "function",
            "function": {
                "name": "ask_database",
                "description": "Use this function to answer user questions about business. \
                            Output should be a fully formed SQL query.",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "query": {
                            "type": "string",
                            "description": f"""
                            SQL query extracting info to answer the user's question.
                            SQL should be written using this database schema:
                            {database_schema_string}
                            The query should be returned in plain text, not in JSON.
                            The query should only contain grammars supported by SQLite.
                            """,
                        }
                    },
                    "required": ["query"],
                }
            }
        }],
    )
    return response.choices[0].message

在这里插入图片描述

重点看两个description:

(1)function 的 description:Use this function to answer user questions about business. Output should be a fully formed SQL query."

  • 要求输出必须是一个SQL语句

(2)参数的description:

python代码解读复制代码f"""
SQL query extracting info to answer the user's question.
SQL should be written using this database schema:
{database_schema_string}
The query should be returned in plain text, not in JSON.
The query should only contain grammars supported by SQLite.
""",
  • 将数据库的数据结构database_schema_string放到prompt中,根据此表的数据结构写SQL语句
  • 不能返回json,而是返回字符串
  • 返回的query语句文字必须符合SQL语法

2. 可以使用了

python代码解读复制代码prompt = "10月的销售额"

messages = [
    {"role": "system", "content": "基于 order 表回答用户问题"},
    {"role": "user", "content": prompt}
]
response = get_sql_completion(messages)
if response.content is None:
    response.content = ""
messages.append(response)
print("====Function Calling====")
print_json(response)

if response.tool_calls is not None:
    tool_call = response.tool_calls[0]
    if tool_call.function.name == "ask_database":
        arguments = tool_call.function.arguments
        args = json.loads(arguments)
        print("====SQL====")
        print(args["query"])
        result = ask_database(args["query"])
        print("====DB Records====")
        print(result)

        messages.append({
            "tool_call_id": tool_call.id,
            "role": "tool",
            "name": "ask_database",
            "content": str(result)
        })
        response = get_sql_completion(messages)
        print("====最终回复====")
        print(response.content)

看下运行过程,可以看到返回了正确的SQL查询语句:

(但是因为我本地没有数据库,所以没有查询到数据,返回“暂时不可用”。为了测试,你可以在本地事先生成一份demo数据,这就涉及到Python操作数据库了,有需要的话我再写个文章介绍下怎么用Python操作数据库)

在这里插入图片描述

3. 进阶 - 多表查询

(1)将数据表数据结构改一下,改成多张表即可

python代码解读复制代码#  描述数据库表结构
database_schema_string = """
CREATE TABLE customers (
    id INT PRIMARY KEY NOT NULL, -- 主键,不允许为空
    customer_name VARCHAR(255) NOT NULL, -- 客户名,不允许为空
    email VARCHAR(255) UNIQUE, -- 邮箱,唯一
    register_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP -- 注册时间,默认为当前时间
);
CREATE TABLE products (
    id INT PRIMARY KEY NOT NULL, -- 主键,不允许为空
    product_name VARCHAR(255) NOT NULL, -- 产品名称,不允许为空
    price DECIMAL(10,2) NOT NULL -- 价格,不允许为空
);
CREATE TABLE orders (
    id INT PRIMARY KEY NOT NULL, -- 主键,不允许为空
    customer_id INT NOT NULL, -- 客户ID,不允许为空
    product_id INT NOT NULL, -- 产品ID,不允许为空
    price DECIMAL(10,2) NOT NULL, -- 价格,不允许为空
    status INT NOT NULL, -- 订单状态,整数类型,不允许为空。0代表待支付,1代表已支付,2代表已退款
    create_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP, -- 创建时间,默认为当前时间
    pay_time TIMESTAMP -- 支付时间,可以为空
);
"""

(2)提问

python代码解读复制代码prompt = "统计每月每件商品的销售额"
# prompt = "这星期消费最高的用户是谁?他买了哪些商品? 每件商品买了几件?花费多少?"
messages = [
    {"role": "system", "content": "基于 order 表回答用户问题"},
    {"role": "user", "content": prompt}
]
response = get_sql_completion(messages)
print(response.tool_calls[0].function.arguments)

(3)运行结果,生成了正确的多表查询语句

在这里插入图片描述

4. 思考 - 利用大模型写数据库查询语句的Prompt

通过上面对function和参数的description描述,我们可以大体看出怎样利用大模型去写正确的SQL查询语句。

Prompt如下:

假如你是一个SQL数据库专家。请按照用户的输入生成一个SQL语句。 SQL should be written using this database schema: “”" CREATE TABLE customers ( id INT PRIMARY KEY NOT NULL, – 主键,不允许为空 customer_name VARCHAR(255) NOT NULL, – 客户名,不允许为空 email VARCHAR(255) UNIQUE, – 邮箱,唯一 register_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP – 注册时间,默认为当前时间 ); CREATE TABLE products ( id INT PRIMARY KEY NOT NULL, – 主键,不允许为空 product_name VARCHAR(255) NOT NULL, – 产品名称,不允许为空 price DECIMAL(10,2) NOT NULL – 价格,不允许为空 ); CREATE TABLE orders ( id INT PRIMARY KEY NOT NULL, – 主键,不允许为空 customer_id INT NOT NULL, – 客户ID,不允许为空 product_id INT NOT NULL, – 产品ID,不允许为空 price DECIMAL(10,2) NOT NULL, – 价格,不允许为空 status INT NOT NULL, – 订单状态,整数类型,不允许为空。0代表待支付,1代表已支付,2代表已退款 create_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP, – 创建时 间,默认为当前时间 pay_time TIMESTAMP – 支付时间,可以为空 ); “”"

The query should be returned in plain text, not in JSON. The query should only contain grammars supported by SQLite. Output should be a fully formed SQL query.

用户输入:统计每月每件商品的销售额,包含商品名称

结果:

在这里插入图片描述 完美。

注意: Function Calling 不仅可以调用读函数,也能调用写函数。但官方强烈建议,在写之前,一定要有人做确认,因为大模型的结果有不确定性。

大模型资源分享

“最先掌握 AI 的人,相较于较晚掌握 AI 的人而言,将具备竞争优势。”这句话放在计算机、互联网以及移动互联网的开局时期,同样适用。

我在一线互联网企业工作长达十余年,期间指导过众多同行后辈,助力许多人实现了学习与成长。为此,我将重要的 AI 大模型资料,包括 AI 大模型入门学习思维导图、精品 AI 大模型学习书籍手册、视频教程以及实战学习等录播视频免费分享出来。
在这里插入图片描述

一、全套 AGI 大模型学习路线

AI 大模型时代的精彩学习之旅:从根基铸就到前沿探索,牢牢掌握人工智能核心技能!

在这里插入图片描述

二、640 套 AI 大模型报告合集

此套涵盖 640 份报告的精彩合集,全面涉及 AI 大模型的理论研究、技术实现以及行业应用等诸多方面。无论你是科研工作者、工程师,还是对 AI 大模型满怀热忱的爱好者,这套报告合集都将为你呈上宝贵的信息与深刻的启示。

在这里插入图片描述

三、AI 大模型经典 PDF 书籍

伴随人工智能技术的迅猛发展,AI 大模型已然成为当今科技领域的一大热点。这些大型预训练模型,诸如 GPT-3、BERT、XLNet 等,凭借其强大的语言理解与生成能力,正在重塑我们对人工智能的认知。而以下这些 PDF 书籍无疑是极为出色的学习资源。
在这里插入图片描述
在这里插入图片描述

阶段 1:AI 大模型时代的基础认知

  • 目标:深入洞悉 AI 大模型的基本概念、发展历程以及核心原理。

  • 内容

    • L1.1 人工智能概述与大模型起源探寻。
    • L1.2 大模型与通用人工智能的紧密关联。
    • L1.3 GPT 模型的辉煌发展历程。
    • L1.4 模型工程解析。
    • L1.4.1 知识大模型阐释。
    • L1.4.2 生产大模型剖析。
    • L1.4.3 模型工程方法论阐述。
    • L1.4.4 模型工程实践展示。
    • L1.5 GPT 应用案例分享。

阶段 2:AI 大模型 API 应用开发工程

  • 目标:熟练掌握 AI 大模型 API 的运用与开发,以及相关编程技能。

  • 内容

    • L2.1 API 接口详解。
    • L2.1.1 OpenAI API 接口解读。
    • L2.1.2 Python 接口接入指南。
    • L2.1.3 BOT 工具类框架介绍。
    • L2.1.4 代码示例呈现。
    • L2.2 Prompt 框架阐释。
    • L2.2.1 何为 Prompt。
    • L2.2.2 Prompt 框架应用现状分析。
    • L2.2.3 基于 GPTAS 的 Prompt 框架剖析。
    • L2.2.4 Prompt 框架与 Thought 的关联探讨。
    • L2.2.5 Prompt 框架与提示词的深入解读。
    • L2.3 流水线工程阐述。
    • L2.3.1 流水线工程的概念解析。
    • L2.3.2 流水线工程的优势展现。
    • L2.3.3 流水线工程的应用场景探索。
    • L2.4 总结与展望。

阶段 3:AI 大模型应用架构实践

  • 目标:深刻理解 AI 大模型的应用架构,并能够实现私有化部署。

  • 内容

    • L3.1 Agent 模型框架解读。
    • L3.1.1 Agent 模型框架的设计理念阐述。
    • L3.1.2 Agent 模型框架的核心组件剖析。
    • L3.1.3 Agent 模型框架的实现细节展示。
    • L3.2 MetaGPT 详解。
    • L3.2.1 MetaGPT 的基本概念阐释。
    • L3.2.2 MetaGPT 的工作原理剖析。
    • L3.2.3 MetaGPT 的应用场景探讨。
    • L3.3 ChatGLM 解析。
    • L3.3.1 ChatGLM 的特色呈现。
    • L3.3.2 ChatGLM 的开发环境介绍。
    • L3.3.3 ChatGLM 的使用示例展示。
    • L3.4 LLAMA 阐释。
    • L3.4.1 LLAMA 的特点剖析。
    • L3.4.2 LLAMA 的开发环境说明。
    • L3.4.3 LLAMA 的使用示例呈现。
    • L3.5 其他大模型介绍。

阶段 4:AI 大模型私有化部署

  • 目标:熟练掌握多种 AI 大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述。
    • L4.2 模型私有化部署的关键技术解析。
    • L4.3 模型私有化部署的实施步骤详解。
    • L4.4 模型私有化部署的应用场景探讨。

学习计划:

  • 阶段 1:历时 1 至 2 个月,构建起 AI 大模型的基础知识体系。
  • 阶段 2:花费 2 至 3 个月,专注于提升 API 应用开发能力。
  • 阶段 3:用 3 至 4 个月,深入实践 AI 大模型的应用架构与私有化部署。
  • 阶段 4:历经 4 至 5 个月,专注于高级模型的应用与部署。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值