2.2.2 实数集的几何解释与实数计算

实数集的几何解释

数轴

可以建立直线到实数集的双射 f : L → R f:\mathbb{L}\to\mathbb{R} f:LR .

这个双射满足这样的性质:对于直线 L \mathbb{L} L 沿自身的平移 T T T , 存在仅与平移 T T T 位移有关的数 t t t , 对于 L \mathbb{L} L 上的所有点有 f ( T ( x ) ) = f ( x ) + t f(T(x))=f(x)+t f(T(x))=f(x)+t .

与点 x x x 对应的实数 f ( x ) f(x) f(x) 称为点的坐标 .

给出一个原点 O O O , 使得它映射至 0 0 0 . 设 L \mathbb{L} L 平移若干位移后, O O O 对应的点为 A A A , 使得它映射至 1. 由 f ( T ( O ) ) = f ( O ) + t f(T(O))=f(O)+t f(T(O))=f(O)+t t = 1 t=1 t=1 , 称之为单位长度 , 线段 O A OA OA 称之为单位线段 . 确定了单位长度和原点的直线称为数轴 .

继续下去, f ( T ( A ) ) = f ( A ) + t = 2 f(T(A))=f(A)+t=2 f(T(A))=f(A)+t=2 , f ( T ( f ( T ( A ) ) ) ) = f ( f ( T ( A ) ) ) = f ( T ( A ) ) + t = 3 f(T(f(T(A))))=f(f(T(A)))=f(T(A))+t=3 f(T(f(T(A))))=f(f(T(A)))=f(T(A))+t=3 , ⋯ \cdots

可以确定映射到正整数的点

f ( T − 1 ( x ) ) = f ( x ) − t f(T^{-1}(x))=f(x)-t f(T1(x))=f(x)t 可得 − 1 , − 2 -1,-2 1,2 等映射到负整数的点 .

将单位线段 n n n 等分,我们可以得到所有形如 m n \frac{m}{n} nm 的映射到有理数的点 .

然而,直线上还有其他点 . 任取一点不映射到有理数的点,它把直线分为两条射线,每条射线上都有有理数点 . 于是,这个点给出 Q \mathbb{Q} Q 的一种分割 . 它把 Q \mathbb{Q} Q 分割为 X , Y X,Y X,Y 两个集合 . 设 s = sup ⁡ X s=\sup X s=supX i = inf ⁡ Y i=\inf Y i=infY . 如果 s < i s< i s<i , 则存在不属于 X X X Y Y Y 的有理数 q q q 满足 s < q < i s< q< i s<q<i . 这与 X ∪ Y = Q X\cup Y=\mathbb{Q} XY=Q 矛盾 . 如果 i < s i< s i<s , 则存在有理数 q q q 既属于 X X X 又属于 Y Y Y , 这与 X X X Y Y Y 不相交矛盾 . 因此 s = i s=i s=i . 而 ∀ x ∈ X , y ∈ Y \forall x\in X,y\in Y xX,yY x ≤ y x\le y xy ,由实数的完备性得,存在一个数 c c c ,使得 x ≤ c ≤ y x\le c\le y xcy , 这个数只能是 c = s = i c=s=i c=s=i . 这个唯一确定的数 c c c 就属于无理数 .

从数轴的角度看,实数的完备性指的是数轴不会断掉,任意两个实数之间都有实数 .

区间

开区间 ( a , b ) : = { x ∈ R ∣ a < x < b } (a,b):=\{x\in\mathbb{R}|a< x< b\} (a,b):={xRa<x<b}

闭区间 [ a , b ] : = { x ∈ R ∣ a ≤ x ≤ b } [a,b]:=\{x\in\mathbb{R}|a\le x\le b\} [a,b]:={xRaxb}

半开半闭区间 ( a , b ] : = { x ∈ R ∣ a < x ≤ b } (a,b]:=\{x\in\mathbb{R}|a< x\le b\} (a,b]:={xRa<xb}

半开半闭区间 [ a , b ) : = { x ∈ R ∣ a ≤ x ≤ b } [a,b):=\{x\in\mathbb{R}|a\le x\le b\} [a,b):={xRaxb}

以上区间称为有界区间,量 b − a b-a ba 称为区间长度

( a , + ∞ ) : = { x ∈ R ∣ a < x } (a,+\infty):=\{x\in\mathbb{R}|a< x\} (a,+):={xRa<x}

[ a , + ∞ ) : = { x ∈ R ∣ a ≤ x } [a,+\infty):=\{x\in\mathbb{R}|a\le x\} [a,+):={xRax}

( − ∞ , a ) : = { x ∈ R ∣ x < a } (-\infty,a):=\{x\in\mathbb{R}| x< a\} (,a):={xRx<a}

( − ∞ , a ] : = { x ∈ R ∣ x ≤ a } (-\infty,a]:=\{x\in\mathbb{R}| x\le a\} (,a]:={xRxa}

以上区间称为半有界区间

( − ∞ , + ∞ ) = R (-\infty,+\infty)=\mathbb{R} (,+)=R 称为无界区间

包含点 x x x 的开区间称为 x x x 的邻域 .

开区间 ( x − δ , x + δ ) (x-\delta,x+\delta) (xδ,x+δ) 称为点 x x x δ \delta δ 邻域

一个实数的绝对值 ∣ x ∣ = { x x > 0 0 x = 0 − x x < 0 |x|=\begin{cases}x&x>0\\0&x=0\\-x&x< 0\end{cases} x= x0xx>0x=0x<0

∣ x − y ∣ |x-y| xy 称为 x x x y y y 之间的距离 . 它具有以下性质:

  • 非负性 ∣ x ∣ ≥ 0 |x|\ge 0 x0 ∣ x ∣ = 0 ⇒ x = 0 |x|=0\Rightarrow x=0 x=0x=0
  • 对称性 ∣ x − y ∣ = ∣ y − x ∣ |x-y|=|y-x| xy=yx
  • 三角不等式 ∣ x − y ∣ ≤ ∣ x − z ∣ + ∣ z − y ∣ |x-y|\le |x-z|+|z-y| xyxz+zy

三角不等式 对于任何实数 x , y x,y x,y , 不等式 ∣ x + y ∣ ≤ ∣ x ∣ + ∣ y ∣ |x+y|\le |x|+|y| x+yx+y 成立 . 当且仅当 x x x y y y 符号相同时,取等式.

证明:

( x ≥ 0 ) ∧ ( y ≥ 0 ) (x\ge 0)\wedge(y\ge 0) (x0)(y0) 时, ∣ x + y ∣ = x + y = ∣ x ∣ + ∣ y ∣ |x+y|=x+y=|x|+|y| x+y=x+y=x+y .

( x ≤ 0 ) ∧ ( y ≤ 0 ) (x\le 0)\wedge(y\le 0) (x0)(y0) 时, ∣ x + y ∣ = − x − y = ∣ x ∣ + ∣ y ∣ |x+y|=-x-y=|x|+|y| x+y=xy=x+y .

x < 0 < y x< 0< y x<0<y 时 ,

或者 x < x + y < 0 ⇒ ∣ x + y ∣ < ∣ x ∣ x< x+y< 0\Rightarrow |x+y|< |x| x<x+y<0x+y<x ,

或者 0 < x + y < y ⇒ ∣ x + y ∣ < ∣ y ∣ 0< x+y< y\Rightarrow |x+y|< |y| 0<x+y<yx+y<y .

y < 0 < x y< 0< x y<0<x 是同理 .

三角不等式推广 ∣ x 1 + x 2 + ⋯ + x n ∣ ≤ ∣ x 1 ∣ + ∣ x 2 ∣ + ⋯ + ∣ x n ∣ |x_1+x_2+\cdots+x_n|\le |x_1|+|x_2|+\cdots+|x_n| x1+x2++xnx1+x2++xn 成立 . 当且仅当所有实数 x 1 , x 2 ⋯   , x n x_1,x_2\cdots,x_n x1,x2,xn 符号相同时取等式 .

实数计算问题

用近似值序列给出一个数

在实际测量中,我们可能无法得到一个精确的数,而只能以一定的精度得到该数的近似值 .

有这样一种设想,用精确度越来越高的近似值序列(有理数序列)来确定一个实数 . 这种设想如果成立,那么将会产生以下问题:

  • 任意给定的一个特定形式近似值序列是否能够唯一确定一个数?
  • 一个数只能由某个特定形式的近似值序列确定嘛?
  • 近似值序列是否能够保持加法和乘法的运算规则?

以上问题需要学习了柯西等人提出的极限理论后才能得到解答 .

误差估计

如果 x x x 是某个量的精确值, x ∼ \overset{\sim}{x} x 是该量的已知近似值,则 Δ ( x ∼ ) : = ∣ x − x ∼ ∣ \Delta(\overset{\sim}{x}):=|x-\overset{\sim}{x}| Δ(x):=xx 称为近似值 x ∼ \overset{\sim}{x} x 的绝对误差, δ ( x ∼ ) : = Δ ( x ∼ ) ∣ x ∣ = ∣ x − x ∼ ∣ ∣ x ∣ \delta(\overset{\sim}{x}):=\frac{\Delta(\overset{\sim}{x})}{|x|}=\frac{|x-\overset{\sim}{x}|}{|x|} δ(x):=xΔ(x)=xxx 称为近似值 x ∼ \overset{\sim}{x} x 的相对误差 .

由于精确值 x x x 通常是未知的,所以 Δ ( x ∼ ) \Delta(\overset{\sim}{x}) Δ(x) δ ( x ∼ ) \delta(\overset{\sim}{x}) δ(x) 也是未知的,但是我们通常能给出其上界, Δ ( x ∼ ) < Δ \Delta(\overset{\sim}{x})< \Delta Δ(x)<Δ , δ ( x ∼ ) < δ \delta(\overset{\sim}{x})< \delta δ(x)<δ , 分别称为绝对误差限和相对误差限 .

写法 x = x ∼ ± Δ x=\overset{\sim}{x}\pm \Delta x=x±Δ 通常表示 x ∼ − Δ ≤ x ≤ x ∼ + Δ \overset{\sim}{x}- \Delta\le x\le \overset{\sim}{x}+ \Delta xΔxx+Δ

Δ ( x ∼ + y ∼ ) : = ∣ ( x + y ) − ( x ∼ + y ∼ ) ∣ ≤ Δ ( x ∼ ) + Δ ( y ∼ ) \Delta(\overset{\sim}{x}+\overset{\sim}{y}):=|(x+y)-(\overset{\sim}{x}+\overset{\sim}{y})|\le \Delta(\overset{\sim}{x})+\Delta(\overset{\sim}{y}) Δ(x+y):=(x+y)(x+y)Δ(x)+Δ(y)

Δ ( x ∼ ⋅ y ∼ ) : = ∣ x ⋅ y − x ∼ ⋅ y ∼ ∣ ≤ ∣ x ∼ ∣ Δ ( y ∼ ) + ∣ y ∼ ∣ Δ ( x ∼ ) + Δ ( x ∼ ) Δ ( y ∼ ) \Delta (\overset{\sim}{x}\cdot \overset{\sim}{y}):=|x\cdot y-\overset{\sim}{x}\cdot \overset{\sim}{y}|\le |\overset{\sim}{x}|\Delta(\overset{\sim}{y})+|\overset{\sim}{y}|\Delta(\overset{\sim}{x})+\Delta(\overset{\sim}{x})\Delta(\overset{\sim}{y}) Δ(xy):=xyxyx∣Δ(y)+y∣Δ(x)+Δ(x)Δ(y)

如果 y ≠ 0 , y ∼ ≠ 0 , δ ( y ∼ ) < 1 y\ne 0,\overset{\sim}{y}\ne 0,\delta(\overset{\sim}{y})< 1 y=0,y=0,δ(y)<1 , 那么还有

Δ ( x ∼ y ∼ ) : = ∣ x y − x ∼ y ∼ ∣ ≤ 1 1 − δ ( y ∼ ) ∣ x ∼ ∣ Δ ( y ∼ ) + ∣ y ∼ ∣ Δ ( x ∼ ) y ∼ 2 \Delta(\frac{\overset{\sim}{x}}{\overset{\sim}{y}}):= |\frac{x}{y}-\frac{\overset{\sim}{x}}{\overset{\sim}{y}}|\le \frac{1}{1-\delta(\overset{\sim}{y})}\frac{|\overset{\sim}{x}|\Delta(\overset{\sim}{y})+|\overset{\sim}{y}|\Delta(\overset{\sim}{x})}{\overset{\sim}{y}^2} Δ(yx):=yxyx1δ(y)1y2x∣Δ(y)+y∣Δ(x)

证明:

x = x ∼ + α x=\overset{\sim}{x}+\alpha x=x+α , y = y ∼ + β y=\overset{\sim}{y}+\beta y=y+β

Δ ( x ∼ + y ∼ ) = ∣ ( x + y ) − ( x ∼ + y ∼ ) ∣ = ∣ α + β ∣ ≤ ∣ α ∣ + ∣ β ∣ = Δ ( x ∼ ) + Δ ( y ∼ ) \Delta(\overset{\sim}{x}+\overset{\sim}{y})=|(x+y)-(\overset{\sim}{x}+\overset{\sim}{y})|=|\alpha+\beta|\le|\alpha|+|\beta|=\Delta(\overset{\sim}{x})+\Delta(\overset{\sim}{y}) Δ(x+y)=(x+y)(x+y)=α+βα+β=Δ(x)+Δ(y)

Δ ( x ∼ ⋅ y ∼ ) = ∣ x ⋅ y − x ∼ ⋅ y ∼ ∣ = ∣ ( x ∼ + α ) ( y ∼ + β ) − x ∼ ⋅ y ∼ ∣ = ∣ x ∼ β + α y ∼ + α β ∣ ≤ ∣ x ∼ ∣ Δ ( y ∼ ) + ∣ y ∼ ∣ Δ ( x ∼ ) + Δ ( x ∼ ) Δ ( y ∼ ) \Delta (\overset{\sim}{x}\cdot \overset{\sim}{y})=|x\cdot y-\overset{\sim}{x}\cdot \overset{\sim}{y}|=|(\overset{\sim}{x}+\alpha)(\overset{\sim}{y}+\beta)-\overset{\sim}{x}\cdot \overset{\sim}{y}|=|\overset{\sim}{x}\beta+\alpha\overset{\sim}{y}+\alpha\beta|\le |\overset{\sim}{x}|\Delta(\overset{\sim}{y})+|\overset{\sim}{y}|\Delta(\overset{\sim}{x})+\Delta(\overset{\sim}{x})\Delta(\overset{\sim}{y}) Δ(xy)=xyxy=(x+α)(y+β)xy=xβ+αy+αβx∣Δ(y)+y∣Δ(x)+Δ(x)Δ(y)

Δ ( x ∼ y ∼ ) = ∣ x y − x ∼ y ∼ ∣ = ∣ x y ∼ − x ∼ y y y ∼ ∣ = ∣ ( x ∼ + α ) y ∼ − x ∼ ( y ∼ + β ) ( y ∼ + β ) y ∼ ∣ = 1 ∣ 1 + β y ∼ ∣ ∣ α y ∼ − x ∼ β ∣ y ∼ 2 ≤ 1 1 − δ ( y ∼ ) ∣ x ∼ ∣ Δ ( y ∼ ) + ∣ y ∼ ∣ Δ ( x ∼ ) y ∼ 2 \Delta(\frac{\overset{\sim}{x}}{\overset{\sim}{y}})= |\frac{x}{y}-\frac{\overset{\sim}{x}}{\overset{\sim}{y}}|=|\frac{x\overset{\sim}{y}-\overset{\sim}{x}y}{y\overset{\sim}{y}}|=|\frac{(\overset{\sim}{x}+\alpha)\overset{\sim}{y}-\overset{\sim}{x}(\overset{\sim}{y}+\beta)}{(\overset{\sim}{y}+\beta)\overset{\sim}{y}}|=\frac{1}{|1+\frac{\beta}{\overset{\sim}{y}}|}\frac{|\alpha\overset{\sim}{y}-\overset{\sim}{x}\beta|}{\overset{\sim}{y}^2} \le \frac{1}{1-\delta(\overset{\sim}{y})}\frac{|\overset{\sim}{x}|\Delta(\overset{\sim}{y})+|\overset{\sim}{y}|\Delta(\overset{\sim}{x})}{\overset{\sim}{y}^2} Δ(yx)=yxyx=yyxyxy=(y+β)y(x+α)yx(y+β)=∣1+yβ1y2αyxβ1δ(y)1y2x∣Δ(y)+y∣Δ(x)

  • δ ( y ∼ ) \delta(\overset{\sim}{y}) δ(y) 接近 1 时,或者 y ∼ \overset{\sim}{y} y 接近 0 时, Δ ( x ∼ y ∼ ) \Delta(\frac{\overset{\sim}{x}}{\overset{\sim}{y}}) Δ(yx) 将有较大的上界

δ ( x ∼ + y ∼ ) ≤ Δ ( x ∼ ) + Δ ( y ∼ ) ∣ x ∼ + y ∼ ∣ \delta(\overset{\sim}{x}+\overset{\sim}{y})\le \frac{\Delta(\overset{\sim}{x})+\Delta(\overset{\sim}{y})}{|\overset{\sim}{x}+\overset{\sim}{y}|} δ(x+y)x+yΔ(x)+Δ(y)

δ ( x ∼ ⋅ y ∼ ) ≤ δ ( x ∼ ) + δ ( y ∼ ) + δ ( x ∼ ) ⋅ δ ( y ∼ ) \delta(\overset{\sim}{x}\cdot \overset{\sim}{y})\le \delta(\overset{\sim}{x})+\delta(\overset{\sim}{y})+\delta(\overset{\sim}{x})\cdot\delta(\overset{\sim}{y}) δ(xy)δ(x)+δ(y)+δ(x)δ(y)

δ ( x ∼ y ∼ ) ≤ δ ( x ∼ ) + δ ( y ∼ ) 1 − δ ( y ∼ ) \delta(\frac{\overset{\sim}{x}}{\overset{\sim}{y}})\le \frac{\delta(\overset{\sim}{x})+\delta(\overset{\sim}{y})}{1-\delta(\overset{\sim}{y})} δ(yx)1δ(y)δ(x)+δ(y)

  • x ∼ + y ∼ \overset{\sim}{x}+\overset{\sim}{y} x+y 接近 0 时, δ ( x ∼ + y ∼ ) \delta(\overset{\sim}{x}+\overset{\sim}{y}) δ(x+y) 将有较大的上界

在实际应用中,当近似值具有足够高的精度时,

Δ ( x ∼ ) ⋅ Δ ( y ∼ ) ≈ 0 , δ ( x ∼ ) ⋅ δ ( y ∼ ) ≈ 0 , 1 − δ ( y ∼ ) ≈ 1 \Delta(\overset{\sim}{x})\cdot \Delta(\overset{\sim}{y})\approx 0,\delta(\overset{\sim}{x})\cdot \delta(\overset{\sim}{y})\approx 0,1-\delta(\overset{\sim}{y})\approx 1 Δ(x)Δ(y)0,δ(x)δ(y)0,1δ(y)1 时,

Δ ( x ∼ ⋅ y ∼ ) ≤ ∣ x ∼ ∣ Δ ( y ∼ ) + ∣ y ∼ ∣ Δ ( x ∼ ) \Delta (\overset{\sim}{x}\cdot \overset{\sim}{y})\le |\overset{\sim}{x}|\Delta(\overset{\sim}{y})+|\overset{\sim}{y}|\Delta(\overset{\sim}{x}) Δ(xy)x∣Δ(y)+y∣Δ(x)

Δ ( x ∼ y ∼ ) ≤ ∣ x ∼ ∣ Δ ( y ∼ ) + ∣ y ∼ ∣ Δ ( x ∼ ) y ∼ 2 \Delta(\frac{\overset{\sim}{x}}{\overset{\sim}{y}})\le \frac{|\overset{\sim}{x}|\Delta(\overset{\sim}{y})+|\overset{\sim}{y}|\Delta(\overset{\sim}{x})}{\overset{\sim}{y}^2} Δ(yx)y2x∣Δ(y)+y∣Δ(x)

δ ( x ∼ ⋅ y ∼ ) ≤ δ ( x ∼ ) + δ ( y ∼ ) \delta (\overset{\sim}{x}\cdot \overset{\sim}{y})\le \delta(\overset{\sim}{x})+\delta(\overset{\sim}{y}) δ(xy)δ(x)+δ(y)

δ ( x ∼ y ∼ ) ≤ δ ( x ∼ ) + δ ( y ∼ ) \delta(\frac{\overset{\sim}{x}}{\overset{\sim}{y}})\le \delta(\overset{\sim}{x})+\delta(\overset{\sim}{y}) δ(yx)δ(x)+δ(y)

位置记数法

位置计数法可以给出一种用有理数序列逼近实数的过程

如果固定一个数 q > 1 q>1 q>1 , 则对于任何正数 x ∈ R x\in\mathbb{R} xR ,可以求出唯一的整数 k ∈ Z k\in\mathbb{Z} kZ , 使得 q k − 1 ≤ x < q k q^{k-1}\le x< q^k qk1x<qk .

证明:

先证明形如 q k , k ∈ Z q^k,k\in\mathbb{Z} qk,kZ 的数的集合 A A A 没有上界 . 假设 A A A 有上界,则 A A A 有上确界 s s s , 则根据上确界的定义得,存在数 q m q^m qm , 使得 s q < q m ≤ s \frac{s}{q}< q^m\le s qs<qms . 这说明 s < q m − 1 s< q^{m-1} s<qm1 , 这与 s s s A A A 的上确界矛盾 . 由此 A A A 没有上界 .

由于 A A A 没有上界,因此对于任何正数 x x x , 可以找到整数 N N N , 使得 n > N n>N n>N 时,有 x < q n x< q^n x<qn . 于是满足 x < q n x< q^n x<qn 的整数 n n n 组成的集合非空有下界,它有最小元素 k k k , k k k 即为所求的唯一整数 .

满足 q p ≤ x < q p + 1 q^p\le x< q^{p+1} qpx<qp+1 的唯一整数 p p p 称为数 x x x 对底数 p p p 的阶数 .

根据阿基米德原理,存在唯一的自然数 α p \alpha_p αp , 使得 α p q p ≤ x < ( α p + 1 ) q p \alpha_p q^p\le x< (\alpha_p+1)q^p αpqpx<(αp+1)qp .

则由阶数的定义得, α p < q \alpha_p< q αp<q , 即 α p ∈ { 1 , 2 , ⋯   , q − 1 } \alpha_p\in\{1,2,\cdots,q-1\} αp{1,2,,q1} .

继续由阿基米德原理得,存在唯一的整数 α p − 1 \alpha_{p-1} αp1 , 使得 α p − 1 q p − 1 ≤ x − α p q p < ( a p − 1 + 1 ) q p − 1 \alpha_{p-1}q^{p-1}\le x-\alpha_p q^p< (a_{p-1}+1)q^{p-1} αp1qp1xαpqp<(ap1+1)qp1

α p − 1 q p − 1 + α p q p ≤ x < ( a p − 1 + 1 ) q p − 1 + α p q p \alpha_{p-1}q^{p-1}+\alpha_p q^p\le x< (a_{p-1}+1)q^{p-1}+\alpha_p q^p αp1qp1+αpqpx<(ap1+1)qp1+αpqp

也可得 0 ≤ α p − 1 < q 0\le \alpha_{p-1}< q 0αp1<q , 即 α p − 1 ∈ { 0 , 1 , 2 , ⋯   , q − 1 } \alpha_{p-1}\in\{0,1,2,\cdots,q-1\} αp1{0,1,2,,q1}

继续下去,

可以得到与 x x x 唯一对应的有理序列 α p , α p − 1 , ⋯   , α p − n , ⋯ \alpha_p,\alpha_{p-1},\cdots,\alpha_{p-n},\cdots αp,αp1,,αpn,

其中每个数都取值于 { 0 , 1 , 2 , ⋯   , q − 1 } \{0,1,2,\cdots,q-1\} {0,1,2,,q1}

也可以看作正数 x x x 与有理数列 r n = α p q p + ⋯ + α p − n q q − n r_n=\alpha_pq^p+\cdots+\alpha_{p-n}q^{q-n} rn=αpqp++αpnqqn 有唯一的对应关系,并且 r n ≤ x < r n + 1 q n − p r_n\le x< r_n+\frac{1}{q^{n-p}} rnx<rn+qnp1

规定 p ≥ 0 p\ge 0 p0 时,在 α 0 \alpha_0 α0 右边写上小数点,则

x = α p ⋯ α 0 . α − 1 ⋯ α p − n ⋯ = α p q p + ⋯ + α 0 q 0 + α − 1 q − 1 + ⋯ + α p − n q p − n + ⋯ x=\alpha_p\cdots\alpha_0.\alpha_{-1}\cdots\alpha_{p-n}\cdots=\alpha_pq^p+\cdots+\alpha_0q^0+\alpha_{-1}q^{-1}+\cdots+\alpha_{p-n}q^{p-n}+\cdots x=αpα0.α1αpn=αpqp++α0q0+α1q1++αpnqpn+

p < 0 p< 0 p<0 时,在 α p \alpha_p αp 左边补上 ∣ p ∣ |p| p 个零,并在最左边的 0 右边写上小数点,则

x = 0.00 ⋯ α p α p − 1 ⋯ = α p q p + ⋯ + α p − n q p − n + ⋯ x=0.00\cdots\alpha_p\alpha_{p-1}\cdots=\alpha_pq^p+\cdots+\alpha_{p-n}q^{p-n}+\cdots x=0.00αpαp1=αpqp++αpnqpn+

两个不同的实数 x x x y y y 对应于不同的序列 { r n } , { r n ′ } \{r_n\},\{r'_n\} {rn},{rn} .

证明:

否则 r n ≤ x < r n + 1 q n − p , r n ≤ y < r n + 1 q n − p r_n\le x< r_n+\frac{1}{q^{n-p}}, r_n\le y< r_n+\frac{1}{q^{n-p}} rnx<rn+qnp1,rny<rn+qnp1

可以推出对于所有的 n ∈ N n\in\mathbb{N} nN , ∣ x − y ∣ < 1 q n − p |x-y|< \frac{1}{q^{n-p}} xy<qnp1 . 这说明 x = y x=y x=y . 产生矛盾 .

如果由 α k ∈ { 0 , 1 , 2 , ⋯   , 9 } \alpha_k\in\{0,1,2,\cdots,9\} αk{0,1,2,,9} 表示的记号 α p ⋯ α 0 . α − 1 ⋯ α p − n ⋯ \alpha_p\cdots\alpha_0.\alpha_{-1}\cdots\alpha_{p-n}\cdots αpα0.α1αpn 在任意靠后的位置中都有不等于 q − 1 q-1 q1 的数,则它能够对应某个正实数 .

证明:

假设 m > k m>k m>k 时, α p − m = q − 1 \alpha_{p-m}=q-1 αpm=q1

r n = α p q p + ⋯ + α p − k q p − k + ( q − 1 ) q p − k − 1 + ⋯ + ( q − 1 ) q p − n r_n=\alpha_pq^p+\cdots+\alpha_{p-k}q^{p-k}+(q-1)q^{p-k-1}+\cdots+(q-1)q^{p-n} rn=αpqp++αpkqpk+(q1)qpk1++(q1)qpn

= r k + ( q − 1 ) q p − n ( 1 − q n − k ) 1 − q = r k + q p − k − q p − n =r_k+(q-1)\frac{q^{p-n}(1-q^{n-k})}{1-q}=r_k+q^{p-k}-q^{p-n} =rk+(q1)1qqpn(1qnk)=rk+qpkqpn

于是 r k + q p − k − q p − n ≤ x < r k + q p − k r_k+q^{p-k}-q^{p-n}\le x< r_k+q^{p-k} rk+qpkqpnx<rk+qpk

则对任意的 n > k n>k n>k 都有 0 < r k + q p − k − x < q p − n 0< r_k+q^{p-k}-x< q^{p-n} 0<rk+qpkx<qpn .

这说明 x = r k + q p − k = α p q p + ⋯ + ( α p − k + 1 ) q p − k x=r_k+q^{p-k}=\alpha_pq^p+\cdots+(\alpha_{p-k}+1)q^{p-k} x=rk+qpk=αpqp++(αpk+1)qpk . 与 α p − k \alpha_{p-k} αpk 的定义产生矛盾 .

如果 α p − k − 1 , ⋯   , α p − n \alpha_{p-k-1},\cdots,\alpha_{p-n} αpk1,,αpn 之中存在一个不等于 q − 1 q-1 q1 .

r n < r k + q p − k − q p − n ⇒ r n + q p − n < r k + q p − k r_n< r_k+q^{p-k}-q^{p-n}\Rightarrow r_n+q^{p-n}< r_k+q^{p-k} rn<rk+qpkqpnrn+qpn<rk+qpk

于是 r 0 ≤ r 1 ≤ ⋯ < ⋯ ≤ r n + q p − n ≤ ⋯ r 0 + q p r_0\le r_1\le \cdots < \cdots \le r_n+q^{p-n}\le \cdots r_0+q^{p} r0r1<rn+qpnr0+qp

x = sup ⁡ n ∈ N r n = inf ⁡ n ∈ N ( r n + q p − n ) x=\sup_{n\in\mathbb{N}}r_n=\inf_{n\in\mathbb{N}}(r_n+q^{p-n}) x=supnNrn=infnN(rn+qpn) α p ⋯ α 0 . α − 1 ⋯ α p − n ⋯ \alpha_p\cdots\alpha_0.\alpha_{-1}\cdots\alpha_{p-n}\cdots αpα0.α1αpn 一一对应的实数 .

以上确定的实数的计算模型称为数 x x x q q q 进制计数法, q q q 称为进制基数, α i \alpha_i αi 称为数码, i i i 称为数码的位 .

负数的 q q q 进制计数就是其绝对值对应的正数的 q q q 进制计数加负号 .

0 0 0 对应 0.000000 ⋯ 0.000000\cdots 0.000000

如果保留若干精确位对 q q q 进制数进行计算,误差不会超过保留位的下一个单位

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值