向量数据库全方位解析与选型指南

前言-PREFACE

我们知道,线性代数可以类比为人工智能世界的基本“语言”(读者可参考之前的文章:AI世界的“语言”-线性代数(1)),其中向量作为表示数据和数据间关系的应用更是无处不在。在人工智能时代,数据呈现出爆炸式增长的态势,同时随着深度学习、自然语言处理、图像识别等领域的不断突破,对数据的各种需求也日益复杂,其中非结构化数据占据的比例越来越大。传统的数据库在处理这些高维、非结构化的数据时显得力不从心。在此背景下,向量数据库应运而生,它通过将数据表示为高维向量,并利用向量之间的相似性进行搜索和分析,为AI应用提供了强大的支持。本文将深入探讨向量数据库的概念、原理以及选型。

向量数据库全方位解析与选型-A comprehensive overview of vector databases 

 1. 向量数据库概述 

向量数据库是专门为存储和检索高维向量而设计的数据库系统,它允许快速进行相似度查询,特别是基于向量之间的距离(如欧几里得距离、余弦相似度等)来检索最接近的项。向量数据库不仅可以存储海量的向量数据,还可以在极短时间内提供高效的搜索结果,支持数百万、甚至数十亿条向量的检索任务。这种能力使得向量数据库在处理图像、文本、音频等复杂数据类型时具有得天独厚的优势。

举个具体的搜索实例,假设有一个图片搜索功能,用户想要通过上传一张图片来搜索相似的图片(如IPhone Intelligence 开始支持拍摄实物图片跳转网上商城购买链接页面)。在这个功能中,向量数据库扮演了关键角色,具体的处理过程包括:

  • 向量化处理:首先,使用深度学习模型(如卷积神经网络)将用户上传的图片转换为一个高维向量。这个向量捕捉了图片中的关键特征,如颜色、纹理、形状等。

  • 存储与索引:转换后的向量会被存储在向量数据库中,并通过索引技术进行优化,以便快速检索。

  • 查询与检索:当用户上传新的商品图片并发起搜索请求时,系统会再次使用相同的深度学习模型将图片转换为向量,并在向量数据库中执行相似性搜索。通过计算查询向量与数据库中已有向量之间的相似度(常用余弦相似度等方法),数据库能够快速找到与查询向量最相似的几个向量,即最相似的图片。

由此可见,向量数据库的优势在于:

  • 相似度查询:解决仅按字符匹配的搜索限制,通过计算向量之间的相似性,可以快速得到意思相近的结果,如搜索“鲜花”这个词时,不仅可以把带“鲜花”这个字的相关数据查出来,还可以把玫瑰、百合、紫罗兰等意思相近的文字内容都搜出来。

  • 支持多模态:可以处理各种类型的数据,如文本、图像、音频等,甚至开始实现跨模态间搜索,例如通过文字搜索相似含义的图片等,在以“鲜花”这个词进行搜索时,还可以把玫瑰、百合、紫罗兰等图片搜索出来。

2. 向量数据库关键技术 

向量数据库主要功能为存储和检索,以下流程描述了向量数据库使用的常用场景:

针对向量数据库主要功能涉及的关键技术,以下进行详细介绍:

2.1 数据向量化

在数据存储至向量数据库之前,需要提前将数据进行向量化,即将数据转换为向量,这个过程通常称为特征提取或嵌入(Embedding),核心是将原始数据(如文本、图像或音频等)转化为数值表示,以便进行存储和相似性计算。不同的数据类型会使用不同的方法来提取特征并生成向量。以下是一些常见的数据类型及其向量化方法:

1)文本数据的向量化

文本通常会被转换成语义向量,以便在向量数据库中进行相似性检索。常用的方法包括:

例如:假设词汇表为 ["I", "dogs", "love", "cats"],短句 "I love cats" 可能被表示为向量 [1, 0, 1, 1],表示“l”、“love”、“cats”等词的出现情况。

这种方法虽然简单,但忽略了词的顺序和上下文关系。例如:“I love cats”和“cats love I”在这种表示下具有相同的向量。同时,当词汇量很大时,向量的维度也会很高,使得计算量增加,导致维度灾难。

例如:单词 "king" 可能被表示为向量 [0.5, 0.7, -0.2, ...],并且与词语 "queen" 的向量距离较近,反映它们的语义相似性。

例如:句子 "The cat is sleeping" 可能被表示为向量 [0.2, -0.1, 0.4, ...],这个向量包含了句子中的主语(cat)、谓语(is sleeping)、以及它们之间的关系等信息。向量中的每个元素值并没有直接的物理意义,而是通过模型学习得到的,代表了句子在某个语义空间中的坐标。

  • 词袋模型(Bag of Words, BoW):通过统计文本中的词频,将文本表示为一个高维稀疏向量,每个维度表示某个词是否出现在文本中。

  • 词频-逆文档频率TF-IDF):在词袋模型的基础上加权,提升那些在文档中出现频率高但在整个语料库中出现频率低的词的权重。这样可以更好地反映文本的关键信息。

  • 词向量(Word2Vec 或 GloVe):这类方法使用神经网络将词语映射到一个连续的向量空间中,生成固定长度的向量(通常是 100 到 300 维)。向量之间的距离反映了词语的语义相似性。

  • 句子向量(Sentence Embeddings):通过 BERT、GPT 等预训练语言模型,可以将整个句子或段落转换为一个固定长度的向量。与词向量相比,句子向量能够捕捉语境和上下文的含义。

2)图像数据的向量化

图像数据的向量化过程通常依赖于卷积神经网络(CNN),通过提取图片中的视觉特征,将其转换为向量。

  • 预训练神经网络:通过预训练好的卷积神经网络(如ResNet、VGG等),可以将输入图像转换为特征向量。网络的前几层负责提取图像的低层次特征(如边缘、纹理),而后几层则提取高层次特征(如形状、对象)。

    例如:给定一张包含一只猫的图片,CNN可能输出成一个 512 维或 1024 维的向量 [0.9, 0.1, 0.8, ...],该向量捕捉了图片的关键视觉特征,这个向量的意思可能在表示“猫的耳朵”和“猫的胡须”的维度上具有较高的值,而在表示“人的眼睛”或“车的轮子”的维度上具有较低的值。

  • 自定义神经网络:对于特定领域(如医学图像或卫星图像),可以训练专门的模型来提取更具针对性的图像特征,并生成合适的向量表示。

3)音频数据的向量化

音频数据的向量化也依赖特征提取算法,常用的步骤包括:

  • 梅尔频率倒谱系数(MFCC):这是音频信号处理中最常见的特征提取方法。MFCC可以将音频信号转换为一系列反映声音频率分布的向量表示。它们通常用于语音识别和音乐分类等任务。

    例如:一段语音可以被转化为一系列向量,每个向量对应一个时间片段的特征,包括音高、音色、能量等。

  • 预训练模型:通过模型如VGGish、OpenL3,将音频转化为固定长度的特征向量。它们可以捕捉音频中的情感、音色等复杂特征。

4)其他数据类型的向量化

对于其他数据类型,如视频、时间序列数据,特征提取通常结合了卷积神经网络、循环神经网络(RNN)等模型,将其表示为向量。

另外,在向量数据在特征提取后,存储到向量数据库之前,通常还需要进行一些预处理操作,例如:

  • 数据归一化:将向量的各个维度缩放到统一范围(如将所有值归一化到[0,1]),以减少不同维度之间的数值差异对距离度量的影响。

  • 降维处理:通过主成分分析(PCA)(读者可参考之前的文章:主成分分析PCA详解-线性代数(4))或其他降维技术,减少向量的维度。这将有助于减少数据存储空间并提高检索速度。

2.2 向量数据存储

向量数据库对向量数据进行存储的过程中,通常会对数据进行压缩、分片,另外除向量数据本身外,还会为提高后续检索速度,存储向量索引、元数据等,以下为相关技术介绍:

2.2.1 向量数据的压缩存储

在大型系统中,会遇到处理成千上万甚至上百万个高维高维向量的情况,高维向量存储需要占用大量空间,为了优化存储方式,压缩存储技术可以尽量保持数据的精度基础上减少存储开销。常见的压缩存储技术包括:

1)量化技术

量化技术通过将高维向量映射到一个较小的值域内,达到压缩的目的。常见的量化技术包括:

  • 产品量化(Product Quantization, PQ):产品量化将原始向量分割成若干个子向量,每个子向量独立量化。通过为每个子向量创建较小的码本,减少存储需要的空间。具体过程包括:将原始向量(例如128维)划分为多个小的子向量(如每个子向量32维)。对每个子向量进行聚类(如使用k-means聚类),并为每个子向量创建一个码本(centroid),码本中的每个聚类中心就是一个码字(即聚类中心,假设有256个)。使用码字的索引代替原始子向量的值,这样可以大幅减少数据的存储量。由于子向量被分别量化,整体上可以在保证相对高精度的同时显著减少存储空间。

  • 向量量化(Vector Quantization, VQ):该量化方法是将整个向量使用一个码本来表示。系统对所有的向量进行聚类,生成若干个质心(centroids),每个向量则被映射为最接近的质心,从而达到压缩的效果。具体过程包括:通过聚类方法(如k-means),将所有向量聚成若干簇。将每个向量用其所属簇的质心代表,只保存质心索引,而不保存原始向量。VQ 对整个向量进行统一处理,压缩比高,但压缩精度较低,适用于需要较高压缩比的场景。

  • 层次化产品量化(Hierarchical Product Quantization, HPQ):HPQ 是在产品量化的基础上进一步改进的技术,它通过对每一层的子向量进行递归量化,减少量化误差。它结合了多层次的量化过程,适用于需要精度更高的场景。

2)二进制编码

向量的高维浮点数可以通过二进制编码(Binary Encoding)压缩为低精度表示,从而减少存储开销。这种技术适用于存储量非常大的场景。

  • 浮点数量化:通常浮点数使用32位存储,但可以使用16位或8位来表示向量中的每个分量。这种压缩方法牺牲了一部分精度,但能显著减少内存占用。

  • 哈希编码:通过局部敏感哈希(Locality Sensitive Hashing, LSH)等技术,将向量映射为固定长度的二进制串。LSH 保持相似向量在编码上的一致性,即相似向量会映射为相似的哈希值。这种方法可以用于快速过滤掉不相关的向量。

2.2.2 向量数据的存储结构

为了支持大规模向量数据的高效存储和快速检索,向量数据库设计了专门的存储结构,以下是一些常见的存储结构和策略:

1)存储结构:列式存储 vs 行式存储

向量数据库通常采用列式存储,即每个维度(列)分开存储,而非传统的行式存储。这种设计有助于:

  • 压缩效率更高:每一列的数据类型相同,便于进行数据压缩。

  • 查询优化:查询向量的某个维度或某些特定特征时,列式存储允许直接读取对应列,而不必读取整行数据。

2)分片(Sharding)

当向量数据集规模庞大时,单个节点的存储能力和计算能力可能无法满足需求。因此,分片技术通过将向量数据划分为多个子集,分布到多个服务器节点上,以实现扩展性和负载均衡。

  • 水平分片:按照向量数据的某些特征(如向量ID)将数据分割为若干块,每个分片保存在不同的服务器节点中。

  • 按向量空间分片:有时,数据会根据其在向量空间中的位置进行分割,例如通过聚类算法将相似向量划分为同一分片,便于局部查询。

3)数据副本(Replication)

为了提高数据的可用性和容错性,向量数据库通常会使用数据副本技术。即在不同的节点上存储相同的数据副本,以应对单个节点的故障。如果一个节点失效,系统可以从其他节点获取数据,确保系统的高可用性。

4)索引支持的存储结构

向量数据库常使用专门的索引结构来优化查询性能,这些索引结构直接影响存储策略。常见的索引支持存储结构主要基于树、图、量化、哈希和倒排索引等,将在本文章的2.3.2部分详细介绍。

5)层次化存储

为了兼顾查询速度和存储成本,向量数据库可能会采用层次化存储策略。例如,将较频繁查询的向量存储在高速缓存(如内存或SSD)中,而将不常用的数据存储在更慢的介质(如HDD)上。这样,系统在需要时可以快速访问常用向量,同时降低总体存储成本。

2.2.3 存储过程的优化

向量数据库还会采用多种存储优化技术以提高性能和效率:

  • 数据预分配与紧凑存储:通过预先分配存储空间,减少动态扩展存储时的开销。此外,系统会定期对存储空间进行碎片整理,保证向量数据存储的连续性,减少读写开销。

  • 冷热数据分离:向量数据库可能会根据向量的访问频率,将数据分为“热数据”和“冷数据”。热数据存储在快速访问层(如内存),冷数据存储在较慢的层(如磁盘),实现存储和查询性能的平衡。

2.3 向量数据检索

在具体场景应用中,用户输入数据后,需要首先对用户数据进行向量化,向量化的方式与向量数据库中数据的方式一致,然后根据向量化后的用户数据进行数据检索,检索的方式可以分为精确检索(Exact Nearest Neighbor, ENN)和近似最近邻检索(Approximate Nearest Neighbor, ANN)。

2.3.1 精确检索(Exact Nearest Neighbor, ENN)

对于小规模数据集,可以使用精确检索算法计算所有数据与查询向量的距离,找到最相似的结果。这通常通过计算欧几里得距离、余弦相似度等来实现(相关知识点读者可参考之前的文章:线性代数(AI世界的“语言”)(1))。

2.3.2 近似最近邻检索(Approximate Nearest Neighbor, ANN)

当数据规模较大时,向量数据库使用ANN算法,它通过构建高效索引结构,避免遍历所有数据来进行检索。ANN技术可以在牺牲少量精确度的情况下,显著提升检索速度。ANN算法有多种技术路径,常见的包括基于树、图、量化、哈希和倒排索引的方法:

1)基于树的方法

基于树的ANN方法主要依赖空间划分技术,将高维空间分割成若干区域,从而减少遍历的向量数量。最常见的树结构包括k-d树、Ball Tree、Randomized k-d Tree等。

  • k-d 树(k-dimensional tree)
  • k-d树是用于低维空间最近邻搜索的经典数据结构。其基本思想是递归地将空间划分为k维的超平面,形成一个二叉树结构。每个内部节点代表一个划分超平面,叶节点存储数据点。

  • 在构建过程中,k-d树依次选择不同维度上的中值作为划分点,将数据划分为两半。查询时,树根据查询点的位置遍历相关的子树,最后在一定范围内进行距离计算。比如在下图三维空间,可以先以x轴的中位数平面划分,然后依次y轴,z轴,形成不同维度下的二叉树,后续检索时,在不同的二叉树对应的空间内计算距离。

  • Ball Tree
  • Ball Tree通过将空间划分为若干球形区域来构建树形结构。每个节点对应一个球形区域,节点的半径由区域内数据点的距离范围确定。

  • 查询时,系统计算查询点与球心的距离,并递归遍历可能包含最近邻的子节点区域。

  • Randomized k-d 树

  • 为了克服k-d树在高维空间中的局限性,Randomized k-d Tree通过在不同维度上随机划分数据,从而生成多个随机的k-d树结构。查询时,搜索多个随机树,并合并结果,从而提高搜索的近似性。

2)基于图的方法

基于图的ANN方法通过构建图结构来表示数据点之间的相似性。查询时,算法通过图的节点和边,逐步向最近邻数据点收敛。

  • HNSW(Hierarchical Navigable Small World Graph)
  • HNSW通过构建多层次的有向图来实现近似搜索。顶层图中的节点较为稀疏,较低层次的图越来越密集。每个节点连接到距离较近的其他节点,形成“小世界”特性,使得从任意一个节点开始,可以通过少量跳跃快速到达目标节点。检索时,从图的最高层开始,通过距离最近的节点跳跃至下一层,直到最底层,在底层图中进一步精确搜索最接近的节点。

  • NSW(Navigable Small World Graph)

  • NSW是HNSW的基础版本,只构建单层图,没有分层结构。查询时,系统从随机节点开始,根据相似度沿图的边缘逐步向最近的邻居搜索,直到找到最相似的向量。

3)基于量化的方法

基于量化的ANN方法通过将高维向量量化为离散的代码,利用代码来近似原始向量,并进行快速检索。常见的量化方法包括产品量化(Product Quantization, PQ)和矢量量化(Vector Quantization, VQ),已在2.2.1 向量数据的压缩存储中进行了介绍。

4)基于哈希的方法

基于哈希的ANN方法通过将高维向量映射到低维哈希空间,在低维空间中快速查找相似的哈希值,进而找到近似的最近邻。

  • 局部敏感哈希(Locality Sensitive Hashing, LSH)
  • LSH通过构造多个哈希函数,使得相似的高维向量有较大的概率被映射到相同的哈希桶中。LSH的哈希函数基于向量的几何特性设计,例如余弦相似度或欧氏距离。查询时,系统计算查询向量的哈希值,并查找与其哈希值相同或相近的向量集合,随后进行精确距离计算。

5)基于倒排索引的方法

倒排索引是一种数据结构,用于快速查找包含特定关键词的文档。在文本搜索引擎中,倒排索引被广泛应用。而在向量检索中,它也能起到类似的作用,帮助我们快速找到与查询向量相似的向量。

  • 倒排文件(Inverted File)
  • 倒排索引将向量的每个特征(例如词或特定维度)与相关的向量关联。通过构建特征到向量的映射表,查询时能够快速定位到包含特定特征的向量集合。查询向量被拆分为多个特征,系统查找与这些特征相关的向量集合,并对这些集合中的向量进行精确比较。

  • 假设我们有一个嵌入空间,向量表示如下:

  • 向量1: [0.1, 0.3, 0.8]

  • 向量2: [0.2, 0.1, 0.7]

  • 向量3: [0.4, 0.6, 0.2]

  • 向量4: [0.9, 0.4, 0.3]

  • 倒排索引会记录每个维度(特征值)与相关的向量的关联关系,例如:

  • 特征 0.1 -> 向量1, 向量2

  • 特征 0.3 -> 向量1, 向量4

  • 特征 0.8 -> 向量1

  • 特征 0.6 -> 向量3

  • 当进行查询时,查询向量会被分解为多个特征,系统通过倒排索引找到相关的候选向量,再在这些候选向量中计算距离,从而快速找到近似最近邻向量。

算法

优点

缺点

基于树的方法

k-d 树

适用于低维空间的精确搜索,构建和查询速度较快。

维度高时,树的效率显著下降(称为“维度诅咒”),不适合高维空间数据。

Ball Tree

适用于高维空间,特别是在数据分布不均匀时表现较好。

相比k-d树,Ball Tree的构建和查询效率较低。

Randomized k-d 树

在高维空间中表现优于传统k-d树,能够提高ANN的精度。

构建多个树增加了存储和查询成本。

基于图的方法

HNSW

HNSW在高维空间中表现优异,能够高效找到近似最近邻,并且具有较好的扩展性。

图的构建过程较复杂,内存占用较大。

NSW

NSW图结构简单,适合中小规模数据集。

与HNSW相比,搜索效率较低,尤其是对于大规模数据集。

基于量化的方法

产品量化(PQ)

PQ显著降低了向量的存储空间,适合高维向量数据的ANN搜索。

精度相比其他方法略低,尤其是当数据分布较为复杂时。

向量量化(VQ)

量化方法显著减少了存储空间,且能够快速查找近似的最近邻。

量化过程会导致信息丢失,影响精度。

基于哈希的方法

局部敏感哈希

LSH能够有效应对高维空间的最近邻搜索,构建过程简单,且在大规模数据集上表现良好。

需要构建大量的哈希表来提高精度,导致内存开销较大。

基于倒排索引的方法

倒排文件

倒排索引结构简单,适合稀疏数据(如文本)的ANN搜索。

对于高密度或连续数据,倒排索引的效果不如其他方法。

另外,向量数据库中存储的每个向量还包含元数据。除了能够查询相似向量之外,向量数据库还可以根据元数据查询过滤结果。为此,向量数据库通常维护两个索引:向量索引和元数据索引。它在向量搜索之前或之后执行元数据过滤。

3. 向量数据库选型 

3.1 向量数据库选型因素

向量数据库作为专业领域数据库,在选型时主要考虑的因素包括:

1)数据规模与性能

  • 数据规模:数据库需要处理的数据集的规模(百万、亿级别等)是选型的重要考虑因素。某些数据库在小规模数据集下表现出色,但在大规模数据集下可能会遇到性能瓶颈。

  • 检索速度:向量数据库的检索速度对于实时应用(如推荐系统、个性化搜索)至关重要。不同数据库在检索速度上差异较大,特别是在高维度数据中,某些数据库通过优化索引结构(如HNSW或PQ)提高了检索速度。

  • 吞吐量:系统是否需要高并发处理能力(同时支持大量查询)也是一个关键考虑因素。

2)支持的检索算法

不同的数据库实现了不同的ANN(Approximate Nearest Neighbor)算法。选型时需要评估数据库支持的检索算法与数据和业务需求的匹配度,检索算法上文已进行了详细介绍,需要根据实际场景,选择合适的算法能够平衡搜索的精度与性能。

3)存储与压缩能力

对于大规模向量数据,良好的压缩技术能显著节省存储空间,同时维持较高的检索精度。如上文介绍的量化技术。

4)扩展性与分布式架构

向量数据库是否支持分布式架构,以及能否在分布式环境中有效工作是选型中的重要考虑:

  • 集群部署与分片:大多数数据库需要分布式部署,以支持亿级、甚至更大规模的数据集。如果数据库具有高效的分布式查询、数据分片和负载均衡机制,将能更好地处理大规模数据。

  • 分布式扩展能力:向量数据库能否无缝扩展以适应日益增长的数据量,并保证在多个节点上维持高性能和高可用性。

5)多模态支持

随着深度学习的发展,向量数据库需要处理多种类型的数据,如文本、图像、音频等。因此,支持多模态数据检索能力成为选型中的重要因素。

6)数据一致性与可用性

  • 一致性需求:某些应用场景对数据的一致性要求较高,例如实时更新和检索的场景。需要评估数据库是否支持一致性和高效的并发控制。

  • 高可用性:数据库需要具备容错机制,以确保在节点故障或网络问题时仍能保证服务的连续性和高可用性。

7)集成与生态系统

  • 与现有系统的集成:数据库的API接口、编程语言支持(如Python、Java等)、以及与其他大数据工具(如Hadoop、Spark等)的兼容性和集成能力是选型中的关键因素。

  • 开源与商业支持:数据库是否为开源、是否有完善的文档与社区支持,或者是否有商业化版本及服务也是考虑的一部分。

8)成本

  • 硬件成本:大规模向量数据库需要大量的计算与存储资源,因此硬件成本是需要考虑的重要因素。

  • 软件许可与支持:一些商业化数据库可能会有较高的许可费用,而开源数据库则可以降低这部分成本。

3.2 向量数据库间比较

随着AI的快速发展,向量数据库也处于快速迭代过程,以下是部分典型的向量数据库间比较作为参考:

数据库名称

开源/闭源

功能

数据规模与性能

支持的检索算法

存储与压缩能力

扩展性与分布式架构

多模态支持

数据一致性与可用性

集成与生态系统

Milvus

开源

强大的向量索引和查询能力,支持GPU加速

能处理亿级数据集,性能优异,适合大规模场景,支持计算存储分离和查询插入分离,支持流式、批式向量数据

支持HNSW、IVF等ANN算法

提供先进的量化和压缩技术,适合大规模向量存储

强大的分布式架构,支持自动分片和负载均衡

支持多模态数据

支持高一致性和容错机制

开源,社区活跃,支持Python 、Java、Go、C++、Node.js

Weaviate

开源

灵活的搜索和分类功能,支持多种数据类型

适合处理中到大规模数据集,性能稳定,不支持计算存储分离和查询插入分离,支持流式、批式向量数据

支持HNSW等ANN算法,适合多样化场景

压缩能力中等,适合中等规模数据集

支持分布式集群部署,扩展性较好

强大的多模态数据支持,适合多种数据类型

数据一致性和高可用性机制完善

提供多种API接口和集成选项,支持主流编程语言:Python、Java、Go

Pinecone

闭源

强大的向量搜索和相似度计算

可处理亿级别大规模数据集,性能优异

支持HNSW、IVF等算法,适合复杂场景

支持量化技术和分布式存储,压缩能力强

支持分布式架构,适合大规模扩展

支持多模态数据,优化广泛

高一致性与可用性,适合高并发场景

提供商业支持,API丰富,集成生态系统成熟

FAISS

开源

专注于向量搜索和相似度计算

适合处理大规模数据集,性能优异,不支持计算存储分离和查询插入分离,不支持流式、批式向量数据

支持PQ(产品量化)、HNSW、IVF等算法

高效的量化压缩技术,适合大规模向量数据

支持分布式部署,扩展性较强

多模态数据支持有限,主要面向向量

高效的数据一致性机制

与机器学习框架高度兼容,支持Python、JavaScript

Qdrant

开源

重点支持高效的向量搜索与检索

能处理中等规模数据集,适合向量检索,不支持计算存储分离和查询插入分离,不支持流式、批式向量数据

支持HNSW等ANN算法,适合高效搜索

提供基础的压缩能力,适合中等规模数据集

支持分布式部署,但需要手动扩展

支持多模态数据

数据一致性机制较强

提供多种编程语言的API,支持Python、Go、Rust和良好的社区支持

Chroma

开源

支持多种数据类型和格式,特别是音频数据

适合中小规模数据集,表现稳定,但在大规模数据集上可能需要额外调优,不支持计算存储分离和查询插入分离,不支持流式、批式向量数据

支持ANN检索,算法较为通用

压缩能力有限,适合中小型数据集

支持分布式架构,适合水平扩展

支持多模态数据,但优化主要集中在音频数据

一致性较强,适合对实时性要求较高的场景

具有良好的API支持,支持Python, JavaScript,能够与现有的系统集成

3.3 其他说明

一个优秀的向量数据库,首先得是一个优秀的数据库,需要满足一个优秀数据库所需的备份、恢复和高可用的要求,当前向量数据库在这方面距离传统数据库还有一定差距,另外,传统的数据库如Redis、ES、Opensearch、PostgreSQL通过插件的方式,也实现了向量数据向量数据和存储的功能,因该文主要介绍向量数据库,对于该话题,留待以后讨论。

结语-EPILOGUE

通过上述内容,我们将向量数据库的概念、原理以及选型进行了全面深入分析,相信对大家了解和使用向量数据库会有所帮助。向量数据库也在快速发展过程中,我们会持续关注,也欢迎大家持续关注本公众号,一起探讨更多AI技术。

  • 12
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值