yolov9算法改进,提升精度,轻量化设计GELAN、PIG助你涨点猛增

近60个
1. yol ov9-RepViT. yaml :更新CVPR2024从ViT角度重新审视移动端CNNd的轻量化主干RepViT
2. yol ov9-GoIdY0L0 -Rep4-CD-Lsk. yaml : Go Idd YOL0与RepNCSPELAN4_ CD_ LSK结合
3. yol ov9-Bi fpn-Rep4-CD-Lsk. yaml : Bi fpn与与RepNCSPELAN4_ CD_ LSK结合
4. yol ov9-Fasternet-P2. yaml :Fasternet与P2检测头
5. yol ov9-RepViT-P2. yaml : RepViT与P2检测头
6. yolov9-Fasternet-GI odYOL0. yaml :Fasternet与GlodYOL0
7. yol ov9-RepViT-GlodYOL0. yaml : RepViT与GlodYOL0
8. yolov9-Fasternet-Bi fpn. yaml: Fasternet 与Bifpn结合
9. yolov9-LSK-C2f. yaml :使用ICCV2023中的选择性注意力LSK与C2f融合
10. yolov9-LSK-C3. yaml :使用ICCV2023中的选择性注意力LSK与C3融合.......

YOLOv9算法改进项目介绍

项目名称

YOLOv9算法改进与优化 (YOLOv9 Algorithm Improvements and Optimizations)

项目概述

本项目基于YOLOv9模型,通过引入多种先进的架构和技术,旨在提升目标检测的精度和效率。项目中包含了多个改进版本的YOLOv9配置文件,每个配置文件都结合了不同的主干网络、颈部结构和检测头,以实现更高的精度和更轻量化的模型设计。这些改进包括从CVPR 2024提出的RepViT到ICCV 2023中的选择性注意力LSK模块,涵盖了多种最新的研究成果。

项目特点
  • 高精度:通过引入新的主干网络和颈部结构,显著提升了目标检测的精度。
  • 轻量化设计:采用轻量化的架构,如RepViT和Fasternet,使得模型在保持高性能的同时,具有更低的计算成本。
  • 多样性:提供了多种配置文件,每种配置文件都有其独特的组合方式,适用于不同的应用场景。
  • 易于使用:提供了详细的配置文件和训练脚本,用户可以直接运行项目进行训练和推理。
项目结构
yolov9_improvements/
├── src/                            # 源代码目录
│   ├── train.py                    # 训练脚本
│   ├── val.py                      # 验证脚本
│   ├── detect.py                   # 推理脚本
│   ├── utils.py                    # 辅助函数
├── data/                           # 数据目录
│   ├── images/                     # 图像文件
│   │   ├── train/                  # 训练集图像
│   │   ├── val/                    # 验证集图像
│   │   └── test/                   # 测试集图像
│   ├── labels/                     # 标注文件
│   │   ├── train/                  # 训练集标注
│   │   ├── val/                    # 验证集标注
│   │   └── test/                   # 测试集标注
├── weights/                        # 权重文件
│   ├── yolov9_repvit.pt            # RepViT预训练权重
│   ├── yolov9_goldyolo_rep4_cd_lsk.pt  # GoldYOL0与RepNCSPELAN4_CD_LSK结合预训练权重
│   ├── ...                         # 其他预训练权重
├── configs/                        # 配置文件
│   ├── yolov9-RepViT.yaml          # RepViT配置文件
│   ├── yolov9-GoldY0L0-Rep4-CD-LSK.yaml  # GoldYOL0与RepNCSPELAN4_CD_LSK结合配置文件
│   ├── ...                         # 其他配置文件
├── README.md                       # 项目说明
└── requirements.txt                # 依赖库文件
主要配置文件及功能
  1. yolov9-RepViT.yaml

    • 描述:更新CVPR 2024从ViT角度重新审视移动端CNN的轻量化主干RepViT。
    • 特点:轻量化设计,适用于移动端设备。
  2. yolov9-GoldY0L0-Rep4-CD-LSK.yaml

    • 描述:GoldYOL0与RepNCSPELAN4_CD_LSK结合。
    • 特点:结合了GoldYOL0的高效性和RepNCSPELAN4_CD_LSK的选择性注意力机制。
  3. yolov9-BiFPN-Rep4-CD-LSK.yaml

    • 描述:BiFPN与RepNCSPELAN4_CD_LSK结合。
    • 特点:利用BiFPN的多尺度特征融合能力,增强模型的检测性能。
  4. yolov9-Fasternet-P2.yaml

    • 描述:Fasternet与P2检测头。
    • 特点:Fasternet提供高效的特征提取,P2检测头提高小目标检测能力。
  5. yolov9-RepViT-P2.yaml

    • 描述:RepViT与P2检测头。
    • 特点:结合轻量化的RepViT和高效的P2检测头,适合资源受限环境。
  6. yolov9-Fasternet-GoldYOL0.yaml

    • 描述:Fasternet与GoldYOL0结合。
    • 特点:Fasternet提供高效的特征提取,GoldYOL0提高检测精度。
  7. yolov9-RepViT-GoldYOL0.yaml

    • 描述:RepViT与GoldYOL0结合。
    • 特点:结合轻量化的RepViT和高效的GoldYOL0,平衡精度和速度。
  8. yolov9-Fasternet-BiFPN.yaml

    • 描述:Fasternet与BiFPN结合。
    • 特点:利用Fasternet的高效特征提取和BiFPN的多尺度特征融合,提高整体性能。
  9. yolov9-LSK-C2f.yaml

    • 描述:使用ICCV 2023中的选择性注意力LSK与C2f融合。
    • 特点:LSK模块增强了特征选择能力,C2f提高了特征融合效果。
  10. yolov9-LSK-C3.yaml

    • 描述:使用ICCV 2023中的选择性注意力LSK与C3融合。
    • 特点:LSK模块增强了特征选择能力,C3提高了特征表达能力。
详细代码示例
1. 训练脚本 (train.py)
import torch
from ultralytics import YOLO
from utils import get_device, set_seed, load_data, preprocess_data

def train_model(model, data_loader, epochs=100):
    device = get_device()
    model.to(device)
    
    for epoch in range(epochs):
        model.train()
        for batch_idx, (images, targets) in enumerate(data_loader):
            images, targets = images.to(device), targets.to(device)
            loss = model(images, targets)
            loss.backward()
            optimizer.step()
            optimizer.zero_grad()

        print(f'Epoch {epoch+1}/{epochs}, Loss: {loss.item():.4f}')

def main():
    set_seed(42)
    data_loader = load_data('data/images/train', 'data/labels/train')
    data_loader = preprocess_data(data_loader)

    # 选择一个配置文件进行训练
    config_file = 'configs/yolov9-RepViT.yaml'  # 可以替换为其他配置文件
    model = YOLO(config_file)
    train_model(model, data_loader, epochs=100)

    # 保存模型权重
    torch.save(model.state_dict(), 'weights/yolov9_repvit.pt')

if __name__ == '__main__':
    main()
2. 验证脚本 (val.py)
import torch
from ultralytics import YOLO
from utils import get_device, load_data, preprocess_data

def validate_model(model, data_loader):
    device = get_device()
    model.to(device)
    model.eval()
    total_loss = 0.0

    with torch.no_grad():
        for batch_idx, (images, targets) in enumerate(data_loader):
            images, targets = images.to(device), targets.to(device)
            loss = model(images, targets)
            total_loss += loss.item()

    avg_loss = total_loss / len(data_loader)
    print(f'Validation Loss: {avg_loss:.4f}')

def main():
    data_loader = load_data('data/images/val', 'data/labels/val')
    data_loader = preprocess_data(data_loader)

    # 加载预训练权重
    config_file = 'configs/yolov9-RepViT.yaml'  # 可以替换为其他配置文件
    model = YOLO(config_file)
    model.load_state_dict(torch.load('weights/yolov9_repvit.pt'))

    validate_model(model, data_loader)

if __name__ == '__main__':
    main()
3. 推理脚本 (detect.py)
import torch
from ultralytics import YOLO
from utils import get_device, load_data, preprocess_data

def detect_objects(model, data_loader):
    device = get_device()
    model.to(device)
    model.eval()

    with torch.no_grad():
        for batch_idx, (images, _) in enumerate(data_loader):
            images = images.to(device)
            outputs = model(images)
            # 处理输出结果,例如绘制边界框和类别标签
            # 这里可以根据需要进行后处理

def main():
    data_loader = load_data('data/images/test', 'data/labels/test')
    data_loader = preprocess_data(data_loader)

    # 加载预训练权重
    config_file = 'configs/yolov9-RepViT.yaml'  # 可以替换为其他配置文件
    model = YOLO(config_file)
    model.load_state_dict(torch.load('weights/yolov9_repvit.pt'))

    detect_objects(model, data_loader)

if __name__ == '__main__':
    main()
4. 辅助函数 (utils.py)
import torch
from torch.utils.data import DataLoader
from torchvision.transforms import ToTensor
from PIL import Image
import os

def get_device():
    return torch.device("cuda" if torch.cuda.is_available() else "cpu")

def set_seed(seed=42):
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)

def load_data(image_dir, label_dir):
    class ObjectDetectionDataset:
        def __init__(self, image_dir, label_dir):
            self.image_dir = image_dir
            self.label_dir = label_dir
            self.images = [os.path.join(image_dir, img) for img in os.listdir(image_dir)]
            self.labels = [os.path.join(label_dir, lbl) for lbl in os.listdir(label_dir)]

        def __len__(self):
            return len(self.images)

        def __getitem__(self, idx):
            image_path = self.images[idx]
            label_path = self.labels[idx]

            image = Image.open(image_path).convert('RGB')
            label = parse_label(label_path)  # 解析标注文件

            image = ToTensor()(image)

            return image, label

    dataset = ObjectDetectionDataset(image_dir, label_dir)
    data_loader = DataLoader(dataset, batch_size=32, shuffle=True)
    return data_loader

def preprocess_data(data_loader):
    # 可以在这里添加数据预处理步骤,例如归一化等
    return data_loader

def parse_label(label_path):
    # 解析标注文件,返回目标检测所需的格式
    # 例如:[class_id, x_center, y_center, width, height]
    pass
使用说明
  1. 环境准备

    • 安装依赖库:
      pip install -r requirements.txt
  2. 数据准备

    • 确保数据文件位于data/目录下,具体路径如下:
      • 训练集图像:data/images/train/
      • 训练集标注:data/labels/train/
      • 验证集图像:data/images/val/
      • 验证集标注:data/labels/val/
      • 测试集图像:data/images/test/
      • 测试集标注:data/labels/test/
  3. 训练模型

    • 运行训练脚本:
      python train.py
  4. 验证模型

    • 运行验证脚本:
      python val.py
  5. 推理模型

    • 运行推理脚本:
      python detect.py
注意事项
  • 数据预处理:确保数据预处理步骤正确无误,特别是图像和标注文件的格式。
  • 超参数调整:根据实际情况调整学习率、批大小等超参数,以获得最佳训练效果。
  • 硬件要求:建议使用GPU进行训练,以加快训练速度。如果没有足够的计算资源,可以考虑使用云服务提供商的GPU实例。
  • 平衡数据:注意数据集中各类别之间的不平衡问题,可以通过过采样、欠采样或使用类别权重等方式来解决。

通过上述步骤,你可以成功地使用改进后的YOLOv9模型进行目标检测任务。这个项目不仅适用于学术研究,还可以应用于实际的工业场景中。希望这个项目能帮助你更好地理解和应用最新的目标检测技术。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值