TPU和其他(李沐老师课程)

这张图片展示的是Qualcomm Snapdragon 845移动平台的芯片组布局。具体来说:

  • 在中心位置有一个大的矩形模块,上面写着“Snapdragon X20 LTE modem”,这指的是高通的X20 LTE调制解调器,它是用于无线通信的组件。

  • 在其下方,有一个较小的矩形模块,标记着“Wi-Fi”,这是处理无线网络信号的组件。

  • 在左上角,有一个名为“Hexagon 685 DSP”的模块,这是高通的数字信号处理器,用于处理音频和视频信号。

  • 在右上角,有一个标有“Adreno 630 Visual Processing Subsystem”的模块,这是高通的图形处理单元(GPU),负责图形渲染和一些计算任务。

  • 在左下角,有一个“Aqstic Audio Codec”,这是高通的音频编解码器,用于处理音频输入和输出。

  • 在右下角,有一个“Spectra 280 ISP”,这是图像信号处理器,用于处理相机传感器捕获的图像数据。

  • 在中心偏下的位置,有一个“Kryo 385 CPU”,这是高通的自研CPU核心。

  • 在右方,有一个“System Memory”,这是手机的系统内存。

  • 在右下角还有一个“Secure Processing Unit”,这是安全处理单元,用于处理敏感信息和加密任务。

  • 整体布局体现了SoC(System on Chip,片上系统)的设计理念,所有这些组件都集成在一个单一的芯片上,提高了效率和节省了空间。

这张图片介绍了数字信号处理(DSP)的一些特点和优势:

  • 数字信号处理主要应用于特定的算法,比如点积、卷积和快速傅立叶变换(FFT)等。

  • 它的特点是低功耗和高性能,相比移动GPU,DSP在某些特定任务上能够提供更快的速度,同时消耗更少的能量。

  • DSP采用VLIW(Very long instruction word,超长指令字)架构,一条指令可以完成上百次乘累加运算,这使其在处理数学密集型任务时非常有效。

然而,这也带来了一定的挑战:

  • VLIW架构的编程和调试相对困难,因为它要求程序员对硬件有深入的理解来编写高效的代码。

  • 编译器的质量参差不齐,可能会对最终的性能产生影响。

这张图片介绍的是可编程阵列(FPGA)的相关内容:

  • FPGA拥有大量的可编程逻辑单元和可配置的连接,可以根据需求配置成不同的电路结构。

  • 使用诸如VHDL和Verilog这样的硬件描述语言进行编程。

  • FPGA通常比通用硬件更加高效,因为它们是根据特定应用定制的。

然而,FPGA也有一些缺点:

  • 相关工具链的质量参差不齐,可能会影响开发体验。

  • “编译”一个FPGA程序可能需要花费几个小时的时间,因为硬件的配置过程较为复杂且耗时。

这张图片讨论了AI ASIC的主题:

  • AI ASIC是指专门为人工智能(AI)设计的应用特定制(Application-Specific Integrated Circuit)芯片,这是一个深度学习领域的热门方向。

  • 许多大公司如Intel, Qualcomm, Google, Amazon, Facebook等都在研发自己的AI芯片。

  • 其中Google的TPU(Tensor Processing Unit)是一个标志性产品,它可以与Nvidia GPU相媲美。

  • Google已经在自家服务中大量部署了TPU,例如用于加速其云计算服务中的机器学习任务。

  • TPU的核心是systolic array,这是一种特殊的矩阵计算架构,特别适合于张量处理,也就是深度学习中常见的多维数组操作。

这张图片解释了systolic array的概念:

  • Systolic array是由一系列称为处理元素(Processing Element,PE)的计算单元组成的阵列。

  • 这种结构非常适合做矩阵乘法,这是深度学习中常用的运算。

  • 设计和制造systolic array相对简单,这也是为什么它成为AI ASIC的一个重要组成部分的原因。

图中显示了一个简单的systolic array示意图,其中每个框代表一个PE,箭头表示数据流的方向。这种结构通过相邻PE间的协同工作实现了高效的矩阵乘法运算。

这张图片展示了Systolic Array如何实现矩阵乘法的过程:

  • 图中显示了一个3x2的输入矩阵X和一个3x3的权重矩阵W相乘得到一个3x2的结果矩阵Y的过程。

  • 时间轴从左至右,首先输入的第一个值X11会与第一行的三个权重W11、W12、W13相乘,然后将结果分别送到下面的PE中。

  • 同一时刻,第二个输入值X21会与第二行的三个权重相乘并将结果送入对应的PE。

  • 每个PE接收来自上方和左侧的输入,进行乘积累加操作,最后输出到右侧。

  • 输入按照箭头指示的方向往右推进,直到所有的输入都被处理完毕。

  • 最终,经过多个步骤后,输出矩阵Y会被构建出来,这就是矩阵乘法的基本原理。

这张图片继续演示了Systolic Array执行矩阵乘法的过程:

  • 在时间步2,新的输入X12到达并开始与权重相乘,而之前计算出的部分结果则向下流动。

  • PE之间的数据流是有序的,输入向右传递,结果向下传递。

  • 这样,每个PE都可以连续地接收新的输入并产出部分结果,从而高效地完成整个矩阵乘法运算。

  • 结果矩阵Y的值会在多个时间步之后逐渐形成,这是由于数据在Systolic Array内部的流动方式决定的。

这张图片展示的是使用Systolic Array进行矩阵乘法的第七个时间步:

  • 在这个时间步,所有输入都已经经过了Systolic Array,此时输出矩阵Y的值已经完全形成了。

  • 输出矩阵Y的各个元素对应着Systolic Array的不同位置,每个位置上的PE都完成了相应的乘积累加操作。

  • 这里可以看到,Systolic Array是如何通过流水线的方式逐步计算出矩阵乘法的结果的。

  • 这种结构充分利用了硬件资源,并且避免了大量的数据传输,提高了效率。

这张图片进一步说明了Systolic Array在实际应用中的考虑因素:

  • 对于一般的矩阵乘法,如果矩阵大小不适合Systolic Array的尺寸,可以通过切分和填充的方法来匹配SA的大小。

  • 另外一种优化方法是批量输入,这样可以在一定程度上降低延迟,提高吞吐率。

  • 虽然Systolic Array主要用于矩阵乘法,但在神经网络中还有其他的操作子,如激活层,这些通常由额外的硬件单元来处理。

  • 这些额外的硬件单元可以与Systolic Array一起构成完整的神经网络加速器,以满足各种计算需求。

### 李沐深度学习课程的学习方法与建议 深入理解李沐老师深度学习课程,可以采取以下几种有效策略来提升学习效果: #### 1. 打好基础知识 确保具备扎实的线性代数、概率论以及编程技能。这些是理解实现复杂算法的基础[^2]。 #### 2. 结合实践项目 理论联系实际非常重要,在掌握基本概念之后尝试完成一些小型项目或实验。这不仅有助于巩固所学知识还能积累宝贵的经验[^1]。 ```python import torch from d2l import torch as d2l def softmax(X): X_exp = torch.exp(X) partition = X_exp.sum(1, keepdim=True) return X_exp / partition # The broadcasting mechanism is applied here ``` 这段代码展示了如何定义softmax函数,这是神经网络中常用的激活函数之一。通过亲手编写这样的功能模块可以帮助加深对原理的理解。 #### 3. 参加讨论社区 加入相关的在线论坛技术交流群组,与其他爱好者分享心得并解决遇到的问题。良好的沟通环境能够促进思维碰撞激发创新灵感。 #### 4. 关注前沿动态 定期阅读最新的研究论文技术博客文章,了解领域内的最新进展发展趋势。对于感兴趣的方向还可以进一步探索其背后的机制应用场景[^3]。 #### 5. 利用辅助资源 除了官方教材外,《动手学深度学习》提供了丰富的配套资料如视频教程、练习题库等,这些都是非常有价值的学习工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值