OpenRL学习资料汇总 - 统一的强化学习框架

OpenRL - 统一的强化学习框架

OpenRL是一个开源的通用强化学习研究框架,支持单智能体、多智能体、离线RL、自对弈和自然语言等多种任务的训练。它基于PyTorch开发,旨在为强化学习研究社区提供一个简单易用、灵活高效且可持续的平台。

🚀 快速入门

  1. 安装OpenRL:
pip install openrl
  1. 简单示例:
from openrl.envs.common import make
from openrl.modules.common import PPONet as Net
from openrl.runners.common import PPOAgent as Agent

env = make("CartPole-v1", env_num=9)  
net = Net(env)  
agent = Agent(net)  
agent.train(total_time_steps=20000)  

只需几行代码,就可以完成强化学习训练!

📚 学习资源

  1. 官方文档 - 详细的使用指南和API参考
  2. 快速入门教程</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值