位置式PID
位置式PID是当前系统的实际位置,与想要达到的预期位置的偏差,进行PID控制
- 比例P:e(k) 此次误差
- 积分I:∑e(i) 误差的累加
- 微分D:e(k) - e(k-1) 此次误差-上次误差
因为有误差积分 ∑e(i),一直累加,也就是当前的输出u(k)与过去的所有状态都有关系。
位置式PID算法的伪代码如下:
//位置式PID(伪代码)
previous_err = 0;
integral = 0;
loop: //根据目标值与测量值(如电机的设定速度与读到的编码器转后后的速度),循环计算更新输出值(如PWM)
error = setpoint - measured_value; /\*误差项:目标值-测量值\*/
integral += error \* dt; /\*积分项:误差项的累计\*/
derivative = (error - previous_error) / dt; /\*微分项:误差的变化率\*/
output = Kp\*error + Ki\*integral + Kd\*derivative; /\*三项分别乘以PID系数即为输出\*/
previous_err = err; //更新误差
wait(dt); //等待固定的计算周期
goto loop;
增量式PID
- 比例P:e(k) - e(k-1) 此次误差-上次误差
- 积分I:e(k) 此次误差d
- 微分D:e(k) - 2e(k-1)+e(k-2) 这次误差-2×上次误差+上上次误差
注意增量式PID首先计算的是Δu(k),然后与上次的输出相加,才是此次的输出结果。增量式PID没有误差累加,控制增量Δu(k)的确定仅与最近3次的采样值有关。
增量式PID算法的伪代码如下:
//增量式PID(伪代码)
previous02_error = 0; //上上次偏差
previous01_error = 0; //上次偏差
integral = 0; //积分和
pid_out = 0; //pid增量累加和
loop:
error = setpoint − measured_value; /\*误差项:目标值-测量值\*/
proportion = error - previous01_error; /\*比例项:误差项-上次偏差\*/
integral = error \* dt; /\*积分项:误差项的累计\*/
derivative = (error − 2\*previous01_error + previous02_error) / dt;/\*微分项:上次误差与上上次误差的变化率\*/
/\*或写成:derivative = ( (error − previous01\_error)/dt - (previous01\_error - previous02\_error)/dt )\*/
pid_delta = Kp × error + Ki × integral + Kd × derivative; //计算得到PID增量
pid_out = pid_out + pid_delta; //计算最终的PID输出
previous02_error = previous01_error; //更新上上次偏差
previous01_error = error; //更新上次偏差
wait(dt); //等待固定的计算周期
goto loop;
PID各项的作用
以这个弹簧为例(假设没有重力,只有空气阻力),先是在平衡位置上(目标位置),拉它一下,然后松手,这时它会震荡起来。
P 比例
P就是比例的意思。这里就类比弹簧的弹力(回复力):F=k*Δx
- 当物块距离平衡位置越远时,弹力越大,反之,离平衡位置越近,力越小。
- 当物块位于平衡位置上方时,弹性向下,当物块位于平衡位置下方时,弹性向上,即弹力总是使物块朝平衡位置施力。
D 微分/求导/变化率
只有P控制,物块一直在上下震荡,整个系统不是特别稳定。
这是因为空气阻力太小,想象一下整个把它放到水里,物块应该很快会静止下来。这时因为阻力的作用。
D的作用就相当于阻力:
- 它与变化速度(单位时间内的变化量)有关,变化的越大,它施加的阻力也就越大
- 它的方向与目标值无关,比如,当物块从下到上经过平衡位置时,它的方向一直是朝下,
即先是阻止物块靠近平衡位置,再是阻止物块远离平衡位置(对比P的作用,始终阻止物块远离平衡位置)
- 它的作用就是减小系统的超调量了(减少系统在平衡位置震荡)
I 积分/误差累积
有了P的动力和D的阻力,这个物块就可以较快的稳定下来了,那I的作用是什么呢?
想象一下,如果有其它外力的影响,在某一时刻,物块将要到达平衡位置时,恰好P的动力与外力(与P的作用方向相反的恒定力)抵消,则之后物块将停在此处附近(因为此时D的力也趋近0,并很快变为0),一直到达不了平衡位置。
这时,I的误差积分作用就很有必要了:
- 它计算的误差的累计,只要有误差,它就一直增加,开始可能很小,但只要没要到达平衡位置,该值就会越来越大
- 它的作用就是消除系统的静态误差了
PID参数整定
实际应用,进行PID参数调节时,一般使用试凑法,PID参数整定口诀如下:
参数整定找最佳,从小到大顺序查,
先是比例后积分,最后再把微分加,
曲线振荡很频繁,比例度盘要放大,
曲线漂浮绕大湾,比例度盘往小扳,
曲线偏离回复慢,积分时间往下降,
曲线波动周期长,积分时间再加长,
曲线振荡频率快,先把微分降下来,
动差大来波动慢,微分时间应加长,
理想曲线两个波,前高后低4比1,
一看二调多分析,调节质量不会低。
电机PID速度控制
上面介绍了PID的基础知识,接下来就使用位置式PID来实现对直流电机转速的控制。
程序
自定义PID结构体
typedef struct
{
float target_val; //目标值
float err; //偏差值
float err_last; //上一个偏差值
float Kp,Ki,Kd; //比例、积分、微分系数
float integral; //积分值
float output_val; //输出值
}PID;
PID算法实现(位置式PID)
float PID\_realize(float actual_val)
{
/\*计算目标值与实际值的误差\*/
pid.err = pid.target_val - actual_val;
/\*积分项\*/
pid.integral += pid.err;
/\*PID算法实现\*/
pid.output_val = pid.Kp \* pid.err +
pid.Ki \* pid.integral +
pid.Kd \* (pid.err - pid.err_last);
/\*误差传递\*/
pid.err_last = pid.err;
/\*返回当前实际值\*/
return pid.output_val;
}
周期调用PID计算
//周期定时器的回调函数
void AutoReloadCallback()
{
int sum = 0;/\*编码器值(PID输入)\*/
int res_pwm = 0;/\*PWM值(PID输出)\*/
/\*读取编码器测量的速度值\*/
sum = read\_encoder();
/\*进行PID运算,得到PWM输出值\*/
res_pwm = PID\_realize(sum);
/\*根据PWM值控制电机转动\*/
set\_motor\_rotate(res_pwm);
/\*给上位机通道1发送实际值\*/
set\_computer\_value(SEND_FACT_CMD, CURVES_CH1, &sum, 1);
}
上位机
这里使用野火多功能调试助手的"PID调试助手“来进行实验,用于显示PID调节时的电机转速曲线。
实验演示
目标速度值设为50(这里的目标值50使用的是编码器10ms捕获的脉冲数),通过体调节PID的参数,来测试电机能否较快的达到目标速度。
先调节P
P值先使用10看看效果,从速度曲线可以看出,达不到目标速度,且与目标速度相差较大。
P | I | D |
---|---|---|
10 | 0 | 0 |
P值加大到100,从速度曲线可以看出,还是达不到目标速度。
P | I | D |
---|---|---|
100 | 0 | 0 |
只使用P,会存在静差,始终达到不了目标值,这时就要使用积分项来消除静差了。
再调节I
P保持100,I使用0.2,从速度曲线可以看出,可以达到目标速度,但跟随的速度较慢。
P | I | D |
---|---|---|
100 | 0.2 | 0 |
P保持100,加大I,使用1.0,从速度曲线可以看出,可以达到目标速度,跟随的速度加快了。
P | I | D |
---|---|---|
100 | 1.0 | 0 |
P保持100,继续加大I,使用3.0,从速度曲线可以看出,可以达到目标速度,跟随的速度进一步加快了。
P | I | D |
---|---|---|
100 | 3.0 | 0 |
P保持100,再继续加大I,使用6.0,从速度曲线可以看出,可以达到目标速度,跟随速度也很快,但有一点过冲。
P | I | D |
---|---|---|
100 | 6.0 | 0 |