3.0 引言
通过第2章所建立的卷积和来表示、分析线性时不变系统,基于将信号表示成一组移位单位冲激的线性组合。
第3章至第5章将讨论信号与线性时不变系统的另一种表示。和第2章一样,讨论的出发点仍是将信号表示成一组基本信号的线性组合,不过这时所用的基本信号是复指数信号,所得到的表示就是连续时间和离散时间傅里叶级数和傅里叶变换。
读者将会看到,这些表示法也能够用来构成范围相当广泛而有用的一类信号。
这样就可以按照在第⒉章所做的那样来处理,即根据叠加性质,线性时不变系统对任意一个由这些基本信号线性组合而成的输入信号的响应,就是系统对这些基本信号单个响应的线性组合。在第2章中,这些单个响应皆为单位脉冲(或冲激)响应的移位,这样就导出了卷积和、卷积积分。在本章将会看到,线性时不变系统对复指数信号的响应也具有一种特别简单的形式,这样就提供了另一种非常方便的线性时不变系统表示法,以及另一种线性时不变系统的分析方法,从而对系统的性质求得更为深入的了解。
本章集中讨论连续时间和离散时间周期信号的傅里叶级数表示。
到第4章和第5章再把这种分析推广到非周期的有限能量信号的傅里叶变换表示中。
这两者合在一起就为分析、设计和理解信号与线性时不变系统提供了一种最有力和最重要的方法。
为了对下面各章节要详细讨论的一些概念和问题有较深入的理解,下一节先对傅里叶分析方法进行简短的历史回顾。
3.1 历史回顾
傅里叶分析方法的建立有过一段漫长的历史,涉及到很多人的工作和许多不同物理现象的研究。利用“三角函数和"(即,成谐波关系的正弦和余弦函数或周期复指数函数的和)的概念来描述周期性过程至少可以追溯到古巴比伦时代……
3.2 线性时不变系统对复指数信号的响应
正如在3.0节已经指出的,在研究线性时不变系统时,将信号表示成基本信号的线性组合是很有利的,但这些基本信号应该具有以下两个性质:
① 由这些基本信号能够构成相当广泛的一类有用信号;
② 线性时不变系统对每一个基本信号的响应应该十分简单,以使系统对任意输人信号的响应有一个很方便的表示式。
傅里叶分析的很多重要价值都来自于这一点,即连续和离散时间复指数信号集都具有上述两个性质,即连续时间的e^st的离散时间的z^n信号(s、z为复数),在本章后续各节和下面两章将详细研究第一个性质。这一节集中讨论第二个性质,并且以此说明在线性时不变系统分析中应用傅里叶级数和傅里叶变换的缘由。
在研究线性时不变系统时,复指数信号的重要性在于这样一个事实:即一个线性时不变系统对复指数信号的响应也是同样一个复指数信号,不同的只是在幅度上的变化,即:
其中H(s)或H(z)是一个复振幅因子,一般来说是复变量s或z的函数。
一个信号,若系统对该信号的输出响应仅是一个常数(可能是复数)乘以输入,则称该信号为系统的特征函数( eigenfunction),而幅度因子称为系统的特征值( eigenvalue)。
连续时间线性时不变系统对e^st的响应:
整理一下:
复指数是线性时不变系统的特征函数。对某一给定的s值,常数H(s)就是与特征函数e^st有关的特征值。
离散时间线性时不变系统对z^n的响应
整理一下:
复指数是离散时间线性时不变系统的特征函数。对于某一给定的z值,常数H(z)就是与特征函数z^n有关的特征值。
线性时不变系统分析,可以把一个更为一般的信号借助于特征函数来分解,例如令x(t)为三个复指数信号的线性组合……
更一般地说,在连续时间情况下,式(3.5)与叠加性质结合在一起就意味着:将信号表示成复指数的线性组合,就会导致一个线性时不变系统响应的方便表达式。具体而言,若一个连续时间线性时不变系统的输入表示成复指数的线性组合,即
那么输出就一定是
对于离散时间情况,完全类似地,若一个离散时间线性时不变系统的输入表示成复指数的线性组合,即
那么输出就一定是
换句话说,对于连续时间和离散时间来说,如果一个线性时不变系统的输入能够表示成复指数的线性组合,那么系统的输出也能够表示成相同复指数信号的线性组合;并且在输出表示式中的每一个系数可以用输入中相应的系数ak分别与特征函数e^skt或zk^n有关的系统特征值H(sk)或H(zk)相乘来求得。
考虑这样一个问题:究竟有多大范围的信号可以用复指数的线性组合来表示?在下面几节中将对周期信号来研究这个问题,次序是先连续后离散。到第4章和第5章再把这些表示式推广到非周期信号中去。
一般来说,在式(3.1)到式(3.16)中的s和z都可以是任意复数,但傅里叶分析仅限于这些变量的特殊形式。
在连续时间情况下仅涉及s的纯虚部值,即s = jω,因此仅考虑e^jωt形式的复指数。
在离散时间情况下仅限于单位振幅的z值,即z = e^jω,因此仅考虑e^jωn形式的复指数。
3.3 连续时间周期信号的傅里叶级数表示
3.3.1 成谐波关系的复指数信号的线性组合
正如在第1章中所定义的,如果一个信号是周期的,那么对所有的t,存在某个正值的T,有
x(t) = x(t+T),对所有的t,x(t)的基波周期就是满足上式的最小非零正值T,而ω=2π/T称为基波频率。
在第1章中还介绍了两个基本周期信号,即正弦信号x(t) = cos ω0t 和周期复指数信号x(t) = ejω0t,这两个信号都是周期的,而且其基波频率为ω0,基波周期T=2π/ω0。
与x(t) = ejω0t有关的成谐波关系( harmonically related)的复指数信号集就是
这些信号中的每一个都有一个基波频率,它是ω0的倍数.因此每一个信号对周期T来说都是周期的(虽然对|k|≥2来说,Φk(t)的基波周期是T的约数)。于是,一个由成谐波关系的复指数线性组合形成的信号
对T来说也是周期的。
k=0这一项就是一个常数
k= ±1这两项都有基波频率等于ω0,两者合在一起称为基波分量( fundamental component)或称为一次谐波分量( first harmonic component )。
k= ±2这两项也是周期的,其周期是基波分量周期的1/2(或者说频率是基波频率的两倍),称为二次谐波分量( second harmonic component)。
一般来说,k = ±N的分量称为第N次谐波分量。
一个周期信号表示成式(3.25)的形式,就称为傅里叶级数(Fourier series)表示。
若x(t)是一个实信号,而且能表示成式(3.25)的形式(复指数信号)——通过欧拉变换,x*(t)= x(t),(实数共轭是它自己),所以就有
在该求和式中,以-k代替k,则有
将此式与式(3.25)进行比较,则要求a= a*,或者
注意,例3.2就属于这种情况,在那里a还是实数,且有a*(k)=a(-k)
为导出傅里叶级数的另一种形式,首先将式(3.25)的求和重新写成
由式(3.29),以a*(k)取代a(-k),上式变为
因为在括号内的两项互为共轭,于是
若将ak以极坐标形式给出为
那么式(3.30)就可写成
这就是
式(3.31)就是在连续时间情况下,对实周期信号常常见到的傅里叶级数的表示式。
若将ak以笛卡儿坐标形式表示:
其中B和C都是实数。于是式(3.30)可改写为
在例3.2中,由于ak全都是实数,所以ak =Ak=Bk。因此,式(3.31)和式(3.32)这两个表示式最后都变成如式(3.28)那样的形式。
由此可见,对实周期函数来说,按式(3.25)所给出的复指数形式的傅里叶级数,在数学上就等效为式(3.31)和式(3.32)这两种形式之一,即都是三角函数的表示式。
尽管式(3.31)和式(3.32)这两种形式是最普遍采用的傅里叶级数表示式(事实上,在傅里叶最初的工作中用的就是由式(3.32)给出的傅里叶级数的正弦-余弦形式)。
但是式(3.25)的复指数表示式对于我们要讨论的问题来说,却是特别方便的。所以今后将几乎毫无例外地采用傅里叶级数复指数表示式。
式(3.29)的关系是与傅里叶级数有关的诸多性质之一。这些性质无论在计算上,或是对本质问题的了解上都是非常有用的。3.5节将把大部分重要的性质集中在一起列出,其中几个性质的导出将在本章末习题中考虑。4.3节将在傅里叶变换这样一个更为广泛的范围内讨论它的大部分性质。
3.3.2 连续时间·周期信号·傅里叶级数表示·的确定
假设一个给定的周期信号能表示成式(3.25)的复指数级数形式,这就需要一种办法来确定这些系数ak。将式(3.25)两边各乘以e^-jnω0t,可得
将上式两边从0到T=2π/ω0对t积分,有
这里T是x(t)的基波周期,以上就是在该周期内积分。将上式右边的积分和求和次序交换后得
式(3.34)右边括号内的积分是很容易的,为此利用欧拉关系可得
对于k≠n,cos(k-n)ω0t和sin( k-n)ω0t都是周期函数,其基波周期为T/|k-n|。现在做的积分是在T区间内进行的,而T又一定是它们的基波周期(T/|k-n|)的整倍数。由于积分可以看成被积函数在积分区间内所包括的面积,所以式(3.35)右边的两个积分对于k≠n来说,其值为0;而对k=n,式(3.35)左边的被积函数是1,所以其积分值为T。
综合上述得到
这样式(3.34)的等号右边就简化为Tan。因此有:
该式给出了确定系数的关系式。另外,在求式(3.35)时仅仅用到这一点,即积分是在一个T的间隔内进行,而该T又是cos(k-n)ω0t和sin(k-n)ω0t周期的整倍数。因此,如果在任意T的间隔求积分,结果一定是相同的;这就是说,若以∫T表示在任何一个T间隔内的积分,则应该有
因此
上述过程可归纳如下:如果x(t)有一个傅里叶级数表示式,即x(t)能表示成一组成谐波关系的复指数信号的线性组合,如式(3.25)所示,那么傅里叶级数中的系数就由式(3.37)所确定。这一对关系式就定义为一个周期连续时间信号的傅里叶级数:
其中分别给出了用基波频率ω0和基波周期T表示的傅里叶级数的等效表示式。
式(3.38)称为综合( synthesis)公式。
式(3.39)称为分析(analysis)公式。
系数{ak}称为x(t)的傅里叶级数系数(Fourier series coefficients,常简称为傅里叶系数)或称为x(t)的频谱系数( spectral coefficient)。
这些复数信号是对信号x(t)中的每一个谐波分量大小的度量。系数a0就是x(t)中的直流或常数分量,里,由式(3.39)以k=0代入可得
这就是x(t)在一个周期内的平均值。
3.4 傅里叶级数的收敛
为了对所给的周期方波例子有更进一步的理解,并更为一般地看看傅里叶级数表示的有效性问题,先来研究一个周期信号x(t)用成谐波关系的有限项复指数信号的线性组合来近似的问题:
eN(t)为近似误差……
如果x(t)能展开成傅里叶级数,那么当把这一无穷项级数在所要求的某一项处截断时,这就是仅用成谐波关系的有限项复指数来近似x(t)时的最佳近似。
现在再回到这样一个问题上来,即一个周期信号x(t)什么时候才确实具有一个傅里叶级数的表示。当然,对于任何周期信号,总是能用式(3.39)求得一组傅里叶级数。然而,在某些情况下式(3.39)的积分可能不收敛;
也就是说,对某些ak求得的值可能是无穷大。而且,即使从式(3.39)求得的全部系数都是有限值,当把这些系数代入式(3.38)中时,所得到的无限项级数也可能不收敛于原来的信号x(t)。
所幸的是,对大部分周期性信号而言不存在任何收敛上的困难。
全部连续的周期信号都有一个傅里叶级数表示,使其近似误差能量EN随着N 趋于无分大而趋于0。
这一点对很多不连续信号也是对的,要求就是满足两类稍有不同的条件。
可以用傅里叶级数表示的一类周期信号x(t)是在一个周期内能量有限的信号,即
当满足这一条件时,就能保证由式(3.39)求得的各系数ak是有限值。
进一步,若令xN(t)是对x(t)的近似,而xN( t)是用|k|≤N时的这些系数得到的,即
那么就能保证近似误差中的能量En,随着所增加的项数愈来愈多,即N趋于无穷大而收敛于零。这也就是说,如果定义一个误差函数为
那么就有
正如在本节末尾的一个例子中将看到的,式(3.54)并不意味着信号x(t)和它的傅里叶级数表示
在每一个t值上都相等,而只表示两者没有任何能量上的差别。
当x(t)在一个周期内具有有限能量时就保证收敛,这在实际中是很有用的。这时式(3.54)代表的是x(t)和它的傅里叶级数表示之间没有能量上的差别。因为实际系统都是对信号能量做出响应,从这个角度讲,x(t)和它的傅里叶级数表示就是不可区分的了。由于要研究的大多数周期信号在一个周期内的能量都是有限的,因此它们都有傅里叶级数的表示。
然后,狄里赫利得到了另一组条件,这组条件对于我们所关注的信号也基本上都能满足。这组条件除了在某些对x(t)不连续的孤立的t值外,保证x(t)等于它的傅里叶级数表示;而在那些x(t)不连续的点上,式(3.55)的无穷级数收敛于不连续点两边值的平均值。
狄里赫利条件如下所示。
条件1:在任何周期内,x(t)必须绝对可积( absolutely integrable),即
与平方可积条件相同,这一条件保证了每一系数ak都是有限值,因为
所以,如果上式满足,则|ak| < ∞ 。
条件2:在任意有限区间内,x(t)具有有限个起伏变化;也就是说,在任何单个周期内,x(t)的最大值和最小值的数目有限。
条件3:在x(t)的任何有限区间内,只有有限个不连续点,而且在这些不连续点上,函数是有限值。
由图3.8给出的例子可知,一个不满足狄里赫利条件的信号,一般来说在自然界中都属于比较反常的信号,结果在实际场合不会出现。因此,傅里叶级数的收敛问题对本书要讨论的问题不具有特别重要的意义。对于一个不存在任何间断点的周期信号而言,傅里叶级数收敛,并且在每一点上该级数都等于原来的信号x(t)。对于在一个周期内存在有限数目不连续点的周期信号而言,除去那些孤立的不连续点外,其余所有点上傅里叶级数都等于原来的x(t);而在那些孤立的不连续点上,傅里叶级数收敛于不连续点处的值的平均值。在这种情况下,原来信号和它的傅里叶级数表示之间没有任何能量上的差别。因此,两者从所有实际目的来看可以认为是一样的;具体而言,因为两者只是在一些孤立点上有差异,所以两者在任意区间内的积分是一样的。为此,在卷积的意义下,两者的特性是一样的,因而从线性时不变系统分析的角度来看,两个信号完全是一致的。
为了进一步理解对一个具有不连续点的周期信号,其傅里叶级数是如何收敛的,我们还是回到方波的例子——米切尔森实验、吉伯斯现象。
吉伯斯现象(Gibbs phenomenon):一个不连续信号x(t)的傅里叶级数的截断近似x(t),一般来说,在接近不连续点处将呈现高频起伏和超量。而且,若在实际情况下利用这样一个近似式,就应该选择足够大的N,以保证这些起伏拥有的总能量可以忽略。当然,在极限情况下,我们知道近似误差的能量是零,而且一个不连续信号(如方波)的傅里叶级数表示是收敛的。
3.5 连续时间傅里叶级数性质
表3.1中综合列出了傅里叶级数的一些重要性质:
大部分性质都可以从对应的连续时间傅里叶变换的性质中推演出来。所以这里只限于几个性质的讨论,以此来说明这些性质是如何被导出解释和应用的。
下面从表3.1中挑选出的几个性质的讨论都用一种简便的符号来表明一个周期信号及其傅里叶级数之间的关系,即假设x(t)是一个周期信号,周期为T,基波频率ω0=2π/T。
那么,若x( t)的傅里叶级数系数记为ak,则用
来表示一个周期信号及其傅里叶级数系数的一对关系。
3.5.1 线性性质
令x(t)和y(t)为两个周期信号,周期为T,它们的傅里叶级数系数分别为ak和 bk,即
(注:五种傅里叶变换的分析(FT、FS、DTFT、DFT、DFS)(基于MATLAB)_傅里叶变换 基频-CSDN博客)
因为xt)和yt)具有相同的周期T,因此极易得出这两个信号的任意线性组合也一定是周期的,且周期为T。而且,x(t)和y(t)的线性组合z(t)=Ax( t)+ By(t)的傅里叶级数系数ck由x(t)和y(t)的傅里叶级数系数的同一线性组合给出,即
根据式(3.39)可以直接证明这一点。同时可以看到,线性性质很容易推广到具有相同周期T的任意多个信号的线性组合中去。
3.5.2 时移性质
当给一个周期信号x(t)以某个t0时移时,该信号的周期T保持不变,所得到的信x(t-t0)的傅里叶级数系数bk可以表示为
令τ=t-t0,并注意到新的变量τ也是在某一T的区间内变化的,于是可得
其中ak就是x(t)的第k个傅里叶级数系数。也就是说,若
那么
这个性质的一个结果就是:当一个周期信号在时间上移位时,它的傅里叶级数系数的模保持不变,即|bk| = |ak|。
3.5.3 时间反转性质
当一个周期信号x(t)经过时间反转后,其周期T仍然保持不变,为了确定y(t) =x(-t)的傅里叶级数系数,先看一下时间反转对综合公式(3.38)所带来的影响:
进行变量置换k = -m,得
可见上式的右边就具有对x(-t)的傅里叶级数展开形式,其傅里叶级数系数 bk 就是
这就是说,若
那么
换句话说,施加于连续时间信号上的时间反转会导致其对应的傅里叶级数系效序列的时间反转。时间反转性质的一种结果是:
若x(t)为偶函数,即x(-t)=x(t),则其傅里叶级数系数也为偶,即a(-k)=ak;
若x(t)为奇函数,即x(-t)=-x(t),则其傅里叶级数系数也为奇,即a(-k)=-ak;
3.5.4 时域尺度变换性质
时域尺度变换是一种运算。一般来说,这种运算会改变被变换的信号的周期。如果x(t)是周期的,周期为T,基波频率ω0=2π/T,那么x(αt),α为一个正实数,就是一个周期为T/α且基波频率为αω0的周期信号。因为时间尺度运算是直接加在x(t)的每一次谐波分量上的,所以能很容易得出,这些谐波分量中每一个的傅里叶系数仍是相同的。也就是说,若x(t)具有式(3.38)的傅里叶级数表示,那么
就是x(αt)的傅里叶级数表示。
要强调的是:虽然傅里叶系数没有改变,但由于基波频率变化了,傅里叶级数表示形式是改变了。
3.5.5 相乘性质
假设x(t)和y(t)是两个周期为T的周期信号,且有
因为乘积x(t)y(t)也是周期的,周期为T,就可以将它展开成傅里叶级数,而其傅里叶级数系数hk可以用x(t)和y(t)的傅里叶系数来表示,结果是
导出上面关系的一种办法(见习题3.46)就是将x(t)和y(t)的傅里叶级数表示式相乘,并注意到在这个乘积中的第k次谐波分量一定有一个系数是具有alb(k-l)形式的项之和。可以看出,式(3.64)右边的和式可以看成代表x(t)的傅里叶系数序列与代表y(t)的傅里叶系数序列的离散时间卷积。
时域乘积 == 频域卷积
3.5.6 共轭与共轭对称性质
将一个周期信号x(t)取它的复数共辄,在它的傅里叶级数系数上就会有复数共辄并进行时间反转的结果,即若:
那么:
将式(3.38)两边各取复数共辄,并在求和中以-k代替k,就很容易证明这个性质。
当x(t)为实函数时,可以从这个性质导出一些很有用的结果。这时,由式(3.65)可以看出,由于x(t)=x*(t),傅里叶级数系数就一定是共轭对称( conjugate symmetric)的,即
如前在式(3.29)中所见。这样,对于实信号的傅里叶级数系数的模、相位、实部和虚部,又依次意
味着各种对称性质(均列于表3.1中)。例如,若x(t)为实信号,由式(3.66)看出,a0就为实数,且有
同时,若x(t)为实偶函数,那么由3.5.3节可知a =a_k。然而,根据式(3.66)又有ak*=a_k,所以ak=ak*。这就是说,若x(t)为实偶函数,那么它的傅里叶级数系数也为实偶函数。类似地,若x(t)为实奇函数,那么它的傅里叶级数系数为纯虚奇函数。由此,例如x(t)为实奇函数,则a0 =0。
3.5.7 连续时间周期信号的帕斯瓦尔定理
正如在习题3.46中所证明的,连续时间周期信号的帕斯瓦尔定理是
其中ak是x(t)的傅里叶级数系数,T是该信号的周期。
式(3.67)的左边是周期信号x(t)在一个周期内的平均功率(也就是单位时间内的能量),而同时有
所以|ak|^2就是x(t)中第k次谐波的平均功率。
于是,帕斯瓦尔定理所说的就是:
一个周期信号的总平均功率等于它的全部谐波分量的平均功率之和。
3.5.8 连续时间傅里叶级数性质列表
3.5.9 举例
在求取一个已知信号的傅里叶系数时,可以利用列于表3.1中的这些傅里叶级数性质,绕过一些繁杂的代数运算。下面用三个例子来说明这一点。最后一个例子用来说明,如何用一个信号的性质来详细地表征该信号。
……
3.6 离散时间·周期信号·的傅里叶级数表示
本节讨论离散时间周期信号的傅里叶级数表示。虽然这一讨论采用了与3.3节的讨论完全并行的方式进行,但是它们之间有一些很重要的差别。
特别是,一个离散时间周期信号的傅里叶级数是有限项级数,而在连续时间周期信号情况下是一个无穷级数。
其结果就是在离散时间情况下不存在曾在3.4节讨论的数学上的收敛问题。
3.6.1 成谐波关系的复指数信号的线性组合
正如第1章所定义的,一个离散时间信号x[n],若有
就是一个周期为N的周期信号。基波周期就是使式(3.84)成立的最小正整数N,而ω0=2π/N就是基波频率。例如,复指数e^j(2π/N)n是周期的,周期为N。而且,由下式
给出的所有离散时间复指数信号的集合都是周期的,且周期为N。Φk[n]中的全部信号,其基波频率都是2π/N的倍数,因此它们之间是成谐波关系的。
1.3.3节曾提到,由式(3.85)给出的信号集中只有N个信号是不相同的,这是由于在频率上相差2π的整倍数的离散时间复指数信号都是一样的;具体而言,Φ0[n]=ΦN[n],Φ1[n]=ΦN+1[n],以及一般关系为
这就是说,当k变化一个N的整倍数时,就得到一个完全一样的序列。这一点与连续时间情况是不同的,在那里由式(3.24)定义的信号Φk(t)全都是不相同的。
现在我们希望利用式(3.85)中的序列Φk[n]的线性组合来表示更为一般的周期序列,这样一个线性组合就有如下形式:
序列Φk[n]只在k的N个相继值的区间上是不同的,因此式(3.87)的求和仅仅需要包括N项。于是,式(3.87)的求和是当k在N个相继整数的区间上变化时,从任意k值开始对k进行的。为了指出这一点,特将求和限表示成k =〈N〉,即
例如,k 既可以取k=0,1,2,…,N-1,也可以取k=3,4,…,N+2,等等。
无论怎样取法,由于式(3.86)的关系存在,式(3.88)右边的求和都是一样的。
式(3.88)称为离散时间傅里叶级数,而系数ak则称为傅里叶级数系数。
3.6.2 周期信号傅里叶级数表示的确定
假设一个周期序列x[n],其周期为N。现在想确定,x[n]能否表示成式(3.88)的形式?如果可以,那么这些系数a是什么?这个问题实质上就是要求得一组线性联立方程的解。如果对式(3.88)在x[n]的一个周期内对n的N个连续的值进行求值,则有
这样,式(3.89)就表示当k在N个连续整数值变化时,对应于N个未知系数ak的N个线性方程。可以证明,这N个方程是线性独立的,因此可以利用已知的x[n]值求得系数ak。在习题3.32中考虑的一个例子就是用式(3.89)解出这组联立方程来得到这些傅里叶级数的系数。然而,以下采用与连续时间情况下并行的方法,有可能利用x[n]来求得ak的一个闭式表示式。
导出这一结果的基础是在习题3.54中所证明的如下事实:
式(3.90)所说明的是:一个周期复指数序列的值在整个一个周期内求和,除非该复指数是某一常数,否则其和为零。
现在再来考虑式(3.88)的傅里叶级数表示式。在该式两边各乘以e^jr(2π/N)n,然后在N项上求和,得到
交换上式右边的求和次序得
根据式(3.90)的恒等关系,式(3.92)右边内层对n求和为零,除非(k-r)为零或N的整倍数。因此,如果把r值的变化范围选成与外层求和k值的变化范围一样,而在该范围内选择r值,那么式(3.92)右边最内层的求和,在k=r时就等于N;在k≠r时就等于0。因此,式(3.92)右边就演变为Nar,,于是有
这样,就求得一个傅里叶级数系数的闭式表示式,离散时间傅里叶级数对就为
这两个公式对离散时间周期信号所起的作用,与式(3.38)和式(3.39)对连续时间周期信号所起的作用完全一样。
式(3.94)就是综合公式。
式(3.95)则是分析公式。
和连续时间情况一样,离散时间傅里叶级数系数以ak往往也称为x[n]的频谱系数(spectral coefficient )。这些系数说明了x[n]可分解成N个成谐波关系的复指数信号之和。
再回到式(3.88),我们看到若从0到N-1范围内取k,则有
类似地,若从1到N范围内取k,则有
由式(3.86)知道,Φ0[n] = ΦN[n],因此只要把式(3.96)和式(3.97)进行比较,就可以得出a0=aN。类似地,若k取任何一组N个相连的整数,利用式(3.86),就一定有
这就是说,假设考虑的k值多于N个,那么a的值必定以N为周期,周期性重复。
详细地说明这一点是很重要的。特别是,因为只有N个不同的复指数(周期均为N),所以离散时间傅里叶级数表示式就是一个N项的有限级数。因此,如果在定义傅里叶级数式(3.94)的N个连续k值上,固定这N个连续k值,就一定能由式(3.95)求得N个傅里叶系数。另一方面,常常为了方便而要利用不同的一组N个k值,把式(3.94)看成在任意N个顺序k值上求和是很有用的。由于这个缘故,有时把ak也看成定义在全部k值上的一个序列,而在傅里叶级数表示式中仅仅利用其中某N个连续序列值。此外,因为随着k值的变化,由式(3.86) ,Φk [n]值必然以周期N周期性重复,根据式(3.98),a值也必然以周期N周期性重复。现用下面的例子来说明这一点。
……
在这个例子中,可注意到对所有的k值,a_k=ak*。事实上,只要x[n]是实序列,这个关系总是成立的。这一性质与3.3节对连续时间周期信号讨论的性质是一致的;
并且与连续时间情况下的一样,这一点就意味着,对于一个实周期序列的离散时间傅里叶级数,可有两种等效的表达形式。这些形式与连续时间傅里叶级数的两种表示,即式(3.31)和式(3.32)是很类似的,在习题3.52中将对此进行讨论。
对于我们的讨论目的,由式(3.94)和式(3.95)给出的傅里叶级数的指数表达式尤为方便,今后将毫无例外地使用这一形式。
3.7 离散时间傅里叶级数性质
离散时间和连续时间傅里叶级数性质之间存在着很大的相似性。将列于表3.2的离散时间傅里叶级数的性质与表3.1的性质进行对比很容易就能证实这一点。
上述大部分性质的导出与对应的连续时间傅里叶级数性质的导出是很类似的,并且其中的几个将在本章末的习题中考虑。另外,在第5章中将会看到,大部分性质都能够从离散时间傅里叶变换相应的性质中推论出来。因此,在下面的各小节中将只限于讨论与连续时间情况相比有重要差别的几个性质。同时,用一些例子来说明离散时间傅里叶级数性质在建立一些概念和简化许多周期序列的傅里叶级数的复杂性方面的一些用处。
与连续时间情况相同,下面将用一种简便的符号来表示一个周期信号和它的傅里叶级数系数之间的关系。若x[n]是一个周期信号,周期为N,其傅里叶级数系数记为ak,那么就写成
3.7.1 相乘性质
傅里叶级数表示的相乘性质是体现出连续时间和离散时间情况之间性质有差别的例子。由表3.1知道,两个周期为T的连续时间信号的乘积还是一个周期为T的周期信号,它的傅里叶级数系数序列就是被乘的这两个信号的傅里叶级数系数序列的卷积。在离散时间情况下,假设
都是周期的,且周期为N,那么乘积x[n]y[n]也是一个周期为N的周期序列。由习题3.57所证明的,它的傅里叶系数dk为
除了求和变量现在要限制在N个连续的样本区间以外,式(3.108)就类似于卷积的定义。正如习题3.57所指出的,求和可以在任何l的相继N个值上进行。这种类型的运算称为两个周期的傅里叶系数序列之间的周期卷积( periodic convolution),而求和变量从-∞到∞的这种卷积和的形式有时就称为非周期卷积( aperiodic convolution),以区别于周期卷积。
3.7.2 一次差分性质
与连续时间傅里叶级数的微分性质相并列的是离散时间序列的一次差分运算,其定义为x[n]-x[n-1]。若x[n]是周期的,周期为N,那么。y[n]也是周期的,周期为N,因为将x[n]移位,或者把x[n]与另一个周期为N的周期信号进行线性组合,总是得到一个周期为N的周期信号。同样,若
则对应于x[n]一次差分的傅里叶系数可表示成
利用表3.2的时移和线性性质,这是很容易得到的。在求一次差分的傅里叶级数系数比求原序列的傅里叶系数更容易时,常常使用这个性质(见习题3.31)。
3.7.3 离散时间周期信号的帕斯瓦尔定理
习题3.57已经指出,离散时间周期信号的帕斯瓦尔定理是
其中ak是x[n]的傅里叶级数系数,N是周期。
和连续时间情况相同,上式左边是x[n]在一个周期内的平均功率,而|ak|^2是x[n]的第k次谐波的平均功率。
据此,帕斯瓦尔定理再一次表明:一个周期信号的平均功率等于它的所有谐波分量的平均功率之和。
当然,在离散时间中只有N个不同的谐波分量。同时,由于ak也是周期的,周期为N,所以式(3.110)右边的求和可以在任何k的N个相继值上进行。
3.7.4 举例
这一小节将给出几个例子来说明如何利用离散时间傅里叶级数的性质来表征离散时间周期信号,以及计算它们的傅里叶级数表示式。具体而言,列于表3.2的这些性质可用于简化求取一个给定信号的傅里叶级数系数的过程。首先,这涉及到利用其他信号来表示这个给定信号,而前者的傅里叶级数系数是已知的,或者是比较容易求得的,然后利用表3.2就可以利用其表示给定信号的傅里叶级数系数。例3.13就是这种应用的例子。例3.14则用来说明根据某些部分信息来确定一个序列。例3.15说明表3.2中周期卷积性质的应用。
……
3.8 傅里叶级数与线性时不变系统
从前面几节已经看出,傅里叶级数表示可以用来构造任何离散时间周期信号,以及在实践中具有重要意义的几乎所有连续时间周期信号。
另外,在3.2节中也看到,一个线性时不变系统对一组复指数信号的线性组合的响应具有特别简单的形式。具体而言,在连续时间情况下,若x(t)=e^st是一个连续时间线性时不变系统的输入,那么其输出就为y(t)=H(s)e^st,其中,H(s)由式(3.6)
给出,其中h(τ)是该线性时不变系统的单位冲激响应。
类似地,若x[n]=z^n是一个离散时间线性时不变系统的输入,那么其输出就为y[n] =H(z)z^n,H(z)由式(3.10)
给出,其中h[k]是该线性时不变系统的单位脉冲响应。
当s或z是一般复数时,H(s)和H(z)就称为该系统的系统函数(system function)。对于连续时间信号与系统而言,本章和下一章都将注意力放在Re{s}=0这一特殊情况,这样s=jω,e^st就具有e^jω的形式。这个输入是在频率ω上的一个复指数。具有s = jω形式的系统函数 [即H( jω ) 被看成ω的函数] 就称为该系统的频率响应(frequency response),它由下式给出:
类似地,对于离散时间信号与系统而言,本章和第5章都将集中在|z| =1的z值上,这样z =e^jω,z^n就具有e^jwn的形式。对z局限在z=e^jω形式的系统函数H(z)称为该系统的频率响应,它由下式给出
利用系统的频率响应来表示一个线性时不变系统。对e^jωt(连续时间)或e^jωn(离散时间)这种形式的复指数信号的响应是特别简单的;而且,由于线性时不变系统具有叠加性质,因此一个线性时不变系统对复指数信号线性组合的响应也同样简单和容易表示。
首先考虑连续时间情况。令x(t)为一个周期信号,其傅里叶级数表示为
假定将该信号加入单位冲激响应为h(t)的线性时不变系统作为它的输入,因为在式(3.123)中每一个复指数信号都是该系统的特征函数,在式(3.13)中以sk = jkω0代入,那么其输出就是
于是y(t)也是周期的,且与x(t)有相同的基波频率。而且,若{ak}是输入x(t)的一组傅里叶级数系数,那么{akH(jkω0)}就是输出y(t)的一组傅里叶级数系数;
这就是说,线性时不变系统的作用就是通过乘以相应频率点上的频率响应值来逐个改变输入信号的每一个傅里叶系数。
3.9 滤波
在各种不同的应用中,改变一个信号中各频率分量的相对大小,或者全部消除某些频率分量之类的要求,常常是颇受关注的,这样一种过程称为滤波(filter)。
用于改变频谱形状的线性时不变系统往往称为频率成形滤波器(frequency-shaping filter)。
专门设计成基本上无失真地通过某些频率,而显著地衰减掉或消除掉另一些频率的系统称为频率选择性滤波器( frequency-selectivefilter)。
正如式(3.124)和式(3.131)已指出的,一个线性时不变系统输出的傅里叶级数系数就是输入的这些系数乘以该系统的频率响应。因此,滤波就能够通过恰当地选取系统的频率响应,利用线性时不变系统很方便地予以实现;并且频域的方法为检验这一重要的应用领域提供了理想的工具。这一节和下面两节将首先通过几个例子来看看滤波方面的问题。
3.9.1 频率成形滤波器
……
3.9.2 频率选择性滤波器
频率选择性滤波器是一类专门用于完全地或近似地选取某些频带范围内的信号和除掉其他频带范围内信号的滤波器。
频率选择性不只是在应用中受到关注,由于它的普遍意义,已经产生了一组被广泛接受的术语,用来描述频率选择性滤波器的特性。特别是,尽管应用的不同,一个频率选择性滤波器通过的频率特性有很大的变化,但是几种基本类型的滤波器还是被广泛采用,并且已被赋予了一些名称来标明它们的功能。
低通滤波器(low-pass filter)就是通过低频(即在ω=0附近的频率),而衰减或阻止较高频率的滤波器。
高通滤波器(high-pass filter)就是通过高频而衰减或阻止较低频率的滤波器;
带通滤波器(band-pass filter)就是通过某一频带范围,而衰减掉高于或低于所要通过的这段频带的滤波器。
带阻滤波器(band-stop filter)就是衰减某一频带范围,而通过高于或低于所要通过的这段频带的滤波器。
在每一种情况下,截止频率(cutoff frequency)都是用来定义那些边界频率的,以标明要通过的频率与要阻止的频率之间的边界,也就是在通带( pass-band)、阻带( stop-band)内频率的边界。
(通频带、阻频带)
在定义和评价一个频率选择性滤波器的性能时会出现很多问题。在通带内这个滤波器在所通过的频率上效果究竟怎么样?在阻带内这个滤波器在衰减的频率上又衰减到什么程度?在靠近截止频率附近过渡带(也就是由通带内接近无失真到阻带内大的衰减这一过渡区)有多陡峭?其中的每一个问题都涉及到个真实的频率选择性滤波器的特性与一个理想滤波器特性之间的比较。
理想频率选择性滤波器( ideal frequency-selective filter)是这样一种滤波器,它无失真地通过一组频率上的复指数信号,并全部阻止掉所有其他频率的信号。
例如:连续时间理想低通滤波器……