数据处理和分析之关联规则学习:Apriori:Apriori算法的局限性与改进方法_2024-07-19_13-57-40.Tex

数据处理和分析之关联规则学习:Apriori:Apriori算法的局限性与改进方法

在这里插入图片描述

数据处理和分析之关联规则学习:Apriori算法

Apriori算法的基本原理

Apriori算法是一种用于挖掘频繁项集和关联规则的算法,主要应用于市场篮子分析。其核心思想是基于频繁项集的特性,即如果一个项集是频繁的,那么它的所有子集也应该是频繁的。Apriori算法利用这一特性,通过迭代的方式,从1-项集开始,逐步构建k-项集,直到无法找到更多的频繁项集为止。

关键概念

  • 支持度(Support):一个项集在数据集中出现的频率。
  • 置信度(Confidence):在包含项集A的交易中,同时包含项集B的概率。
  • 频繁项集(Frequent Itemset):支持度大于或等于最小支持度阈值的项集。
  • 关联规则(Association Rule):形如A->B的规则,其中A和B是项集,且A∩B=∅。

最小支持度与最小置信度

Apriori算法通过设定最小支持度和最小置信度来过滤不重要的关联规则。只有当一个项集的支持度大于或等于最小支持度,且由该项集生成的规则的置信度大于或等于最小置信度时,该规则才会被保留。

Apriori算法的步骤详解

Apriori算法的执行过程可以分为两个主要步骤:

  1. 频繁项集的生成:从1-项集开始,逐步构建k-项集,直到无法找到更多的频繁项集为止。
  2. 关联规则的生成:从频繁项集中生成满足最小置信度的关联规则。

步骤1:频繁项集的生成

1.1 生成1-项集的频繁项集

首先,遍历数据集,统计每个项的出现次数,然后根据最小支持度阈值筛选出频繁的1-项集。

1.2 生成k-项集的频繁项集

从频繁的1-项集开始,通过连接和剪枝操作,逐步生成k-项集的频繁项集。连接操作是将两个k-1项集合并成一个k项集,剪枝操作是根据Apriori性质,去除那些包含非频繁k-1项集的k项集。

步骤2:关联规则的生成

从频繁项集中生成满足最小置信度的关联规则。这一步骤通常涉及到对频繁项集进行遍历,生成所有可能的规则,然后计算每个规则的置信度,保留满足最小置信度的规则。

示例代码

假设我们有以下的交易数据集:

D = {
    'T1': {'milk', 'bread', 'butter'},
    'T2': {'milk', 'bread', 'diaper'},
    'T3': {'bread', 'butter', 'diaper'},
    'T4': {'milk', 'butter', 'diaper'},
    'T5': {'bread', 'diaper'}
}

使用Python的mlxtend库来实现Apriori算法:

from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules

# 将交易数据集转换为编码形式
te = TransactionEncoder()
te_ary = te.fit(D.values()).transform(D.values())
df = pd.DataFrame(te_ary, columns=te.columns_)

# 应用Apriori算法
frequent_itemsets = apriori(df, min_support=0.4, use_colnames=True)
rules = association_rules(frequent_itemsets, metric="confidence", min_threshold=0.7)

# 输出频繁项集和关联规则
print(frequent_itemsets)
print(rules)

解释

在上述代码中,我们首先使用TransactionEncoder将交易数据集转换为编码形式,然后应用Apriori算法生成频繁项集。最后,我们使用association_rules函数从频繁项集中生成满足最小置信度的关联规则。

通过设定不同的最小支持度和最小置信度,我们可以控制挖掘出的关联规则的范围和质量。Apriori算法虽然简单直观,但在处理大规模数据集时,其计算复杂度较高,需要进行优化和改进。


以上内容详细介绍了Apriori算法的基本原理和执行步骤,通过一个具体的示例展示了算法的实现过程。Apriori算法在关联规则学习中具有重要的地位,但其在处理大规模数据集时的效率问题也促使了后续算法的改进和发展。

数据处理和分析之关联规则学习:Apriori算法的局限性

频繁项集生成的瓶颈分析

Apriori算法在频繁项集生成阶段存在明显的瓶颈。这一阶段要求算法多次扫描数据库,以确定哪些项集是频繁的。随着项集大小的增加,扫描数据库的次数也会增加,这导致了算法的计算复杂度和运行时间显著增长。

原理

Apriori算法基于频繁项集的先验性质,即如果一个项集是频繁的,那么它的所有子集也必须是频繁的。算法通过迭代过程生成频繁项集,每次迭代都会生成比前一次更大的项集。这一过程包括生成候选集剪枝两个关键步骤。

问题描述

  • 多次数据库扫描:算法需要多次遍历数据库,每次为了生成下一个大小的频繁项集,这导致了较高的I/O成本。
  • 候选集爆炸:随着项集大小的增加,候选集的数量会呈指数级增长,这增加了内存需求和计算时间。
  • 剪枝效率:剪枝步骤虽然有助于减少候选集的数量,但在大数据集上,剪枝过程本身也可能成为瓶颈。

示例代码与数据样例

假设我们有一个简单的交易数据集,如下所示:

交易ID | 商品
-------|------
1      | {牛奶, 面包, 茶}
2      | {牛奶, 茶}
3      | {面包, 茶}
4      | {牛奶, 面包}
5      | {面包, 茶}

使用Python的mlxtend库,我们可以实现Apriori算法来生成频繁项集:

from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori

# 交易数据
dataset = [['牛奶', '面包', '茶'],
           ['牛奶', '茶'],
           ['面包', '茶'],
           ['牛奶', '面包'],
           ['面包', '茶']]

# 数据编码
te = TransactionEncoder()
te_ary = te.fit(dataset).transform(dataset)
df = pd.DataFrame(te_ary, columns=te.columns_)

# 应用Apriori算法
frequent_itemsets = apriori(df, min_support=0.4, use_colnames=True)
print(frequent_itemsets)

解释

在上述代码中,我们首先对交易数据进行编码,将其转换为适合Apriori算法处理的格式。然后,我们应用Apriori算法,设置最小支持度为0.4,这意味着任何频繁项集在所有交易中至少出现40%的次数。输出的frequent_itemsets数据框将包含所有满足条件的频繁项集及其支持度。

候选集生成与剪枝的效率问题

在Apriori算法中,候选集的生成和剪枝步骤是计算密集型的。虽然剪枝可以减少不必要的计算,但在大数据集上,生成大量候选集和进行剪枝仍然需要消耗大量资源。

原理

  • 候选集生成:Apriori算法通过连接上一轮的频繁项集来生成新的候选集。例如,如果在第一轮中找到所有频繁的单个商品,那么在第二轮中,它将尝试连接这些商品以生成频繁的二元商品组合。
  • 剪枝:在生成候选集后,算法会检查数据库以确定哪些候选集是频繁的。剪枝步骤会移除所有不满足最小支持度的候选集。

示例代码与数据样例

继续使用上述的交易数据集,我们可以观察到随着项集大小的增加,候选集的数量如何增长:

# 生成所有可能的候选集
def generate_candidates(itemsets, k):
    candidates = []
    for i in range(len(itemsets)):
        for j in range(i+1, len(itemsets)):
            union = itemsets[i] | itemsets[j]
            if len(union) == k and all([len(union - {item}) <= k-1 for item in union]):
                candidates.append(union)
    return candidates

# 从数据框中提取频繁项集
frequent_itemsets = df.columns[df.sum() >= 2]  # 假设最小支持度为2/5

# 生成候选集
candidates = generate_candidates(frequent_itemsets, 2)
print(candidates)

解释

在代码中,generate_candidates函数用于生成所有可能的二元组合候选集。我们首先从数据框中提取所有频繁的单个商品,然后使用generate_candidates函数生成二元组合。这个过程在实际应用中会随着项集大小的增加而变得越来越复杂,导致候选集数量的指数级增长。

结论

Apriori算法在频繁项集生成和候选集剪枝阶段存在效率瓶颈,尤其是在处理大规模数据集时。这些瓶颈主要由多次数据库扫描、候选集数量的爆炸性增长以及剪枝过程的计算复杂度引起。为了克服这些局限性,研究人员提出了多种改进方法,如FP-growth算法,它通过构建一个称为FP树的数据结构来减少数据库扫描次数,从而提高效率。然而,这些改进方法的详细讨论超出了本教程的范围。

改进Apriori算法的方法

FP-growth算法的原理与实现

FP-growth算法原理

FP-growth(频繁模式树增长)算法是一种用于关联规则学习的高效算法,旨在克服Apriori算法的局限性,特别是减少数据库的扫描次数和候选集的生成。FP-growth通过构建一个FP树来压缩数据集,从而在一次数据库扫描中找到所有频繁项集。

FP树构建

FP树是一个有向无环图,其中包含一个根节点和多个路径,每个路径代表一个事务。树中的每个非根节点代表一个项,节点的计数器表示该项在事务中出现的频率。FP树的构建过程如下:

  1. 第一遍扫描数据库:计算每个项的频率,找出频繁项集。
  2. 构建FP树:对于每个事务,按照项的频率降序插入到FP树中。
  3. 条件模式基和条件FP树:对于每个频繁项,构建条件模式基和条件FP树,用于挖掘包含该频繁项的频繁项集。
算法流程
  1. 初始化:创建一个空的FP树和一个头指针表。
  2. 扫描数据库:计算每个项的频率,将不频繁的项从头指针表中删除。
  3. 构建FP树:对于每个事务,按照头指针表的顺序插入到FP树中。
  4. 挖掘频繁项集:对于头指针表中的每个频繁项,构建条件模式基和条件FP树,递归地挖掘频繁项集。

FP-growth算法实现示例

假设我们有以下事务数据集:

事务ID项集
T1{A, B, C, D}
T2{B, C, E}
T3{A, B, C, E}
T4{A, B, D, E}
T5{A, C, D, E}
Python代码示例
from collections import defaultdict

# 数据集
transactions = [
    {'A', 'B', 'C', 'D'},
    {'B', 'C', 'E'},
    {'A', 'B', 'C', 'E'},
    {'A', 'B', 'D', 'E'},
    {'A', 'C', 'D', 'E'}
]

# 构建FP树
def build_fp_tree(transactions):
    # 计算项的频率
    item_freq = defaultdict(int)
    for transaction in transactions:
        for item in transaction:
            item_freq[item] += 1

    # 过滤不频繁的项
    item_freq = {item: freq for item, freq in item_freq.items() if freq >= 2}
    sorted_items = sorted(item_freq, key=item_freq.get, reverse=True)

    # 构建FP树
    fp_tree = FPNode("root", None, None)
    for transaction in transactions:
        transaction = [item for item in transaction if item in item_freq]
        transaction.sort(key=lambda item: sorted_items.index(item))
        fp_tree.add_transaction(transaction)

    return fp_tree

# FP树节点类
class FPNode:
    def __init__(self, value, count, parent):
        self.value = value
        self.count = count
        self.parent = parent
        self.children = {}
        self.link = None

    def add_transaction(self, transaction):
        if not transaction:
            return
        if transaction[0] not in self.children:
            self.children[transaction[0]] = FPNode(transaction[0], 1, self)
            if self.value == "root":
                self.children[transaction[0]].link = self.children[transaction[0]]
            else:
                self.children[transaction[0]].link = self.link
                while self.children[transaction[0]].link and self.children[transaction[0]].link.value != transaction[0]:
                    self.children[transaction[0]].link = self.children[transaction[0]].link.link
                if not self.children[transaction[0]].link:
                    self.children[transaction[0]].link = self.children[transaction[0]]
        else:
            self.children[transaction[0]].count += 1
        self.children[transaction[0]].add_transaction(transaction[1:])

# 构建FP树
fp_tree = build_fp_tree(transactions)

FP-growth算法优势

  • 减少数据库扫描次数:FP-growth只需要两次数据库扫描,而Apriori可能需要多次。
  • 无需生成候选集:FP-growth通过构建FP树和条件FP树直接挖掘频繁项集,避免了Apriori中候选集的生成和测试。

ECLAT算法的介绍与比较

ECLAT算法原理

ECLAT(Equivalence Class Clustering and bottom-up Lattice Traversal)算法是另一种用于关联规则学习的算法,它基于事务的垂直表示,通过递归地遍历项集的组合来发现频繁项集。ECLAT算法的核心思想是利用事务中项的共现关系,减少搜索空间。

算法流程
  1. 初始化:计算每个项的频率。
  2. 递归遍历:对于每个频繁项,与其它频繁项组合,检查组合是否频繁。
  3. 频繁项集生成:重复步骤2,直到无法生成更长的频繁项集。

ECLAT算法与Apriori算法的比较

  • 数据表示:ECLAT使用垂直表示,而Apriori使用水平表示。
  • 搜索策略:ECLAT使用递归遍历,而Apriori使用逐层生成候选集。
  • 性能:在某些数据集上,ECLAT可能比Apriori更快,因为它减少了候选集的生成和测试。

ECLAT算法实现示例

使用上述事务数据集,我们可以通过以下Python代码实现ECLAT算法:

# ECLAT算法实现
def eclat(transactions):
    # 计算每个项的频率
    item_freq = defaultdict(int)
    for transaction in transactions:
        for item in transaction:
            item_freq[item] += 1

    # 过滤不频繁的项
    item_freq = {item: freq for item, freq in item_freq.items() if freq >= 2}
    sorted_items = sorted(item_freq, key=item_freq.get, reverse=True)

    # 递归挖掘频繁项集
    frequent_itemsets = []
    eclat_helper(sorted_items, transactions, [], frequent_itemsets)
    return frequent_itemsets

def eclat_helper(items, transactions, current_itemset, frequent_itemsets):
    for i in range(len(items)):
        new_itemset = current_itemset + [items[i]]
        if is_frequent(new_itemset, transactions):
            frequent_itemsets.append(new_itemset)
            # 生成子集
            sub_transactions = get_sub_transactions(new_itemset, transactions)
            sub_items = items[i+1:]
            eclat_helper(sub_items, sub_transactions, new_itemset, frequent_itemsets)

# 检查项集是否频繁
def is_frequent(itemset, transactions):
    for transaction in transactions:
        if set(itemset).issubset(set(transaction)):
            return True
    return False

# 从事务中提取包含特定项集的子事务集
def get_sub_transactions(itemset, transactions):
    sub_transactions = []
    for transaction in transactions:
        if set(itemset).issubset(set(transaction)):
            sub_transactions.append(transaction)
    return sub_transactions

# 执行ECLAT算法
frequent_itemsets = eclat(transactions)
print(frequent_itemsets)

结论

FP-growth和ECLAT算法都是为了改进Apriori算法的效率而设计的。FP-growth通过构建FP树来压缩数据,减少数据库扫描次数,而ECLAT通过垂直表示和递归遍历来减少搜索空间。在实际应用中,选择哪种算法取决于数据集的特性和具体需求。

数据处理和分析之关联规则学习的实际应用

市场篮子分析案例

市场篮子分析是关联规则学习在零售业中的典型应用,它通过分析顾客的购买行为,找出商品之间的关联性,从而帮助商家制定更有效的营销策略。下面我们将通过一个具体的案例来展示如何使用Python中的mlxtend库进行市场篮子分析。

数据准备

假设我们有以下的交易数据,每一行代表一个顾客的购物篮:

交易ID购买商品
1{‘牛奶’, ‘面包’, ‘黄油’}
2{‘牛奶’, ‘尿布’, ‘啤酒’, ‘鸡蛋’}
3{‘面包’, ‘黄油’, ‘鸡蛋’}
4{‘尿布’, ‘啤酒’}
5{‘牛奶’, ‘面包’, ‘黄油’, ‘尿布’}

代码实现

首先,我们需要将数据转换为适合mlxtend库的格式,然后使用Apriori算法生成频繁项集,最后挖掘关联规则。

# 导入所需库
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori, association_rules
import pandas as pd

# 原始交易数据
dataset = [
    ['牛奶', '面包', '黄油'],
    ['牛奶', '尿布', '啤酒', '鸡蛋'],
    ['面包', '黄油', '鸡蛋'],
    ['尿布', '啤酒'],
    ['牛奶', '面包', '黄油', '尿布']
]

# 使用TransactionEncoder转换数据
te = TransactionEncoder()
te_ary = te.fit(dataset).transform(dataset)
df = pd.DataFrame(te_ary, columns=te.columns_)

# 生成频繁项集
frequent_itemsets = apriori(df, min_support=0.2, use_colnames=True)
print(frequent_itemsets)

# 挖掘关联规则
rules = association_rules(frequent_itemsets, metric="confidence", min_threshold=0.7)
print(rules)

结果分析

运行上述代码后,我们得到的频繁项集和关联规则可以帮助我们理解哪些商品经常一起被购买,以及这些商品组合的购买概率和置信度。例如,我们可能会发现“牛奶”和“面包”经常一起出现,且“尿布”和“啤酒”的组合有较高的置信度,这可能暗示着特定的顾客行为模式。

客户行为模式挖掘

客户行为模式挖掘是关联规则学习的另一个重要应用,它可以帮助企业理解客户在不同场景下的行为,从而优化产品推荐和客户体验。我们可以通过分析客户在网站上的浏览和购买记录来实现这一点。

数据准备

假设我们有以下的客户浏览和购买记录数据:

客户ID浏览商品购买商品
1{‘手机’, ‘耳机’, ‘充电器’}{‘手机’, ‘耳机’}
2{‘电脑’, ‘鼠标’, ‘键盘’}{‘电脑’, ‘键盘’}
3{‘手机’, ‘充电器’}{‘手机’}
4{‘耳机’, ‘充电器’}{‘耳机’}
5{‘电脑’, ‘鼠标’, ‘耳机’}{‘电脑’, ‘鼠标’}

代码实现

我们可以将浏览和购买记录分别处理,然后使用Apriori算法来找出哪些浏览商品最终导致了购买行为。

# 导入所需库
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori, association_rules
import pandas as pd

# 浏览记录数据
browsing_dataset = [
    ['手机', '耳机', '充电器'],
    ['电脑', '鼠标', '键盘'],
    ['手机', '充电器'],
    ['耳机', '充电器'],
    ['电脑', '鼠标', '耳机']
]

# 购买记录数据
purchasing_dataset = [
    ['手机', '耳机'],
    ['电脑', '键盘'],
    ['手机'],
    ['耳机'],
    ['电脑', '鼠标']
]

# 使用TransactionEncoder转换数据
te_browsing = TransactionEncoder()
te_ary_browsing = te_browsing.fit(browsing_dataset).transform(browsing_dataset)
df_browsing = pd.DataFrame(te_ary_browsing, columns=te_browsing.columns_)

te_purchasing = TransactionEncoder()
te_ary_purchasing = te_purchasing.fit(purchasing_dataset).transform(purchasing_dataset)
df_purchasing = pd.DataFrame(te_ary_purchasing, columns=te_purchasing.columns_)

# 合并浏览和购买数据
df_combined = pd.concat([df_browsing, df_purchasing], axis=1)

# 生成频繁项集
frequent_itemsets = apriori(df_combined, min_support=0.2, use_colnames=True)
print(frequent_itemsets)

# 挖掘关联规则
rules = association_rules(frequent_itemsets, metric="confidence", min_threshold=0.7)
print(rules)

结果分析

通过分析上述代码的输出结果,我们可以发现哪些浏览商品与购买商品之间存在强关联,例如,“浏览手机”和“购买手机”之间的高置信度关联规则,这表明浏览手机的客户有很大可能最终会购买手机。这些信息对于优化产品推荐系统和提升客户转化率至关重要。

结论

关联规则学习在市场篮子分析和客户行为模式挖掘中发挥着重要作用,通过使用Python中的mlxtend库,我们可以轻松地从交易数据中发现商品之间的关联性,以及客户在浏览和购买过程中的行为模式。这些发现不仅有助于企业优化库存管理,还能提升客户体验和销售策略的精准度。

总结与展望

Apriori算法在大数据环境下的挑战

在大数据环境下,Apriori算法面临着显著的挑战,主要体现在以下几个方面:

  1. 内存限制:Apriori算法需要多次扫描数据库,每次扫描可能需要将大量的候选集存储在内存中。对于大规模数据集,这可能导致内存溢出。

  2. 计算效率:算法的多次数据库扫描和频繁的候选集生成与剪枝过程,使得其在处理大数据时计算效率低下,尤其是在数据分布不均匀或存在大量频繁项集的情况下。

  3. 数据稀疏性:大数据集往往具有高维度和稀疏性,这使得频繁项集的发现变得更加困难,因为许多项的组合可能在数据中出现的次数很少。

  4. 扩展性问题:Apriori算法的扩展性较差,难以在分布式或并行计算环境中高效运行,限制了其在大规模数据集上的应用。

示例:Apriori算法在大数据集上的性能瓶颈

假设我们有一个包含100万条交易记录的超市销售数据集,每条记录包含100种可能的商品。使用Apriori算法寻找频繁购买组合时,即使是最小支持度设置为1%,在第一次扫描数据库生成候选1-项集时,也需要处理100万次比较。随着项集的增加,候选集的数量呈指数级增长,例如,生成候选2-项集时,可能需要处理近5000万次比较,这还不包括后续的多次扫描和剪枝过程。

# 假设数据集为transactions,每条记录为一个包含商品ID的列表
# 使用Apriori算法寻找频繁项集

from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori

# 数据预处理
te = TransactionEncoder()
te_ary = te.fit(transactions).transform(transactions)
df = pd.DataFrame(te_ary, columns=te.columns_)

# 应用Apriori算法
frequent_itemsets = apriori(df, min_support=0.01, use_colnames=True)

在上述代码中,transactions是一个包含大量交易记录的列表,每个交易记录是一个包含商品ID的列表。通过TransactionEncoder进行预处理,将交易数据转换为适合Apriori算法的格式。然后,使用apriori函数寻找支持度至少为1%的频繁项集。在大数据集上运行这段代码,可能会遇到长时间的计算延迟和内存使用问题。

未来关联规则学习的发展趋势

面对Apriori算法的局限性,未来关联规则学习的发展趋势将集中在以下几个方向:

  1. 算法优化:开发更高效的算法,如FP-growth和ECLAT,这些算法通过构建紧凑的数据结构(如FP树)来减少数据库扫描次数,提高计算效率。

  2. 分布式计算:利用分布式计算框架(如Hadoop或Spark)来并行处理大数据集,提高算法的扩展性和处理速度。

  3. 流数据处理:设计适用于流数据的关联规则学习算法,能够实时或近实时地处理不断更新的数据,适应动态变化的环境。

  4. 深度学习应用:探索将深度学习技术应用于关联规则学习,以处理高维度和非线性关系的数据,提高规则的准确性和复杂度。

  5. 增强解释性:开发能够生成更易于理解和解释的关联规则的方法,特别是在涉及大量特征和复杂关系的场景中。

示例:使用FP-growth算法处理大数据集

FP-growth算法通过构建FP树来避免生成候选集的过程,从而显著提高处理大数据集的效率。以下是一个使用FP-growth算法处理大数据集的示例:

from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import fpgrowth

# 数据预处理
te = TransactionEncoder()
te_ary = te.fit(transactions).transform(transactions)
df = pd.DataFrame(te_ary, columns=te.columns_)

# 应用FP-growth算法
frequent_itemsets = fpgrowth(df, min_support=0.01, use_colnames=True)

在这个示例中,我们使用了与Apriori算法相同的预处理步骤,但将apriori函数替换为fpgrowth函数。FP-growth算法通过构建FP树来直接发现频繁项集,避免了Apriori算法中候选集生成和剪枝的步骤,从而在处理大数据集时表现出更高的效率。

结论

随着数据量的不断增长,传统的Apriori算法在大数据环境下面临着内存限制、计算效率低下、数据稀疏性和扩展性问题。未来的发展趋势将侧重于算法优化、分布式计算、流数据处理、深度学习应用以及增强规则的解释性,以克服这些挑战,实现更高效、更准确的关联规则学习。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值