如何使用 YOLOv8 训练人员翻越或跨越围栏风险识别检测数据集的详细步骤。这个数据集包含一类“翻越”行为,共有 512 张图片,标注文件为 YOLO 适用的 txt 格式,可以直接用于模型训练。同时,我们还将提供数据增强代码。
一、数据准备
- 数据集结构
假设你的数据集已经按照 YOLO 格式组织,并且结构如下:
深色版本
climbing_detection_dataset/
├── images/
│ ├── train/
│ │ ├── 000001.jpg
│ │ ├── 000002.jpg
│ │ └── …
│ └── val/
│ ├── 000001.jpg
│ ├── 000002.jpg
│ └── …
├── labels/
│ ├── train/
│ │ ├── 000001.txt
│ │ ├── 000002.txt
│ │ └── …
│ └── val/
│ ├── 000001.txt
│ ├── 000002.txt
│ └── …
└── climbing_detection.yaml
images/ 目录包含输入图像。
labels/ 目录包含对应的标注文件,每个标注文件中的每一行表示一个目标框,格式为 class_id x_center y_center width height。
climbing_detection.yaml 是数据集的配置文件。
2. 配置文件
创建一个 climbing_detection.yaml 文件,内容如下:
数据集路径
path: ./climbing_detection_dataset
类别名称
names:
0: climbing
数据集划分
train: images/train
val: images/val
二、安装依赖
确保你已经安装了 YOLOv8 所需的依赖。可以使用以下命令安装:
bash
深色版本
pip install ultralytics
三、训练模型
- 导入库
python
深色版本
import torch
from ultralytics import YOLO - 加载模型
python
深色版本
加载预训练的YOLOv8s模型
model = YOLO(‘yolov8s.yaml’)
3. 配置训练参数
python
深色版本
配置训练参数
model.train(
data=‘climbing_detection.yaml’, # 数据集配置文件
epochs=100, # 训练轮数
imgsz=640, # 输入图像大小
batch=16, # 批量大小
name=‘climbing_detection’, # 训练结果保存的文件夹名称
device=‘cuda’ # 使用GPU进行训练
)
四、评估模型
训练完成后,可以使用验证集来评估模型的性能。
python
深色版本
评估模型
results = model.val(data=‘climbing_detection.yaml’, imgsz=640, batch=16, device=‘cuda’)
打印评估结果
print(results)
五、保存模型
训练完成后,模型会自动保存到指定的文件夹中。你也可以手动保存模型:
python
深色版本
保存模型
model.save(‘climbing_detection_model.pt’)
六、完整代码
将上述所有步骤整合成一个完整的脚本:
python
深色版本
import torch
from ultralytics import YOLO
加载预训练的YOLOv8s模型
model = YOLO(‘yolov8s.yaml’)
配置训练参数
model.train(
data=‘climbing_detection.yaml’, # 数据集配置文件
epochs=100, # 训练轮数
imgsz=640, # 输入图像大小
batch=16, # 批量大小
name=‘climbing_detection’, # 训练结果保存的文件夹名称
device=‘cuda’ # 使用GPU进行训练
)
评估模型
results = model.val(data=‘climbing_detection.yaml’, imgsz=640, batch=16, device=‘cuda’)
打印评估结果
print(results)
保存模型
model.save(‘climbing_detection_model.pt’)
七、运行脚本
将上述代码保存为一个 Python 脚本文件(例如 train_climbing_detection.py),然后在命令行中运行:
bash
深色版本
python train_climbing_detection.py
八、数据增强代码
- 数据增强脚本
python
深色版本
import albumentations as A
import cv2
import os
def augment_image(image_path, label_path, output_dir, num_augments=5):
transform = A.Compose([
A.HorizontalFlip(p=0.5),
A.RandomBrightnessContrast(p=0.2),
A.RandomGamma(p=0.2),
A.RandomRotate90(p=0.5),
A.Cutout(num_holes=8, max_h_size=8, max_w_size=8, fill_value=0, p=0.5)
], bbox_params=A.BboxParams(format=‘yolo’, label_fields=[‘class_labels’]))
image = cv2.imread(image_path)
with open(label_path, 'r') as f:
lines = f.readlines()
bboxes = []
class_labels = []
for line in lines:
parts = line.strip().split()
class_id = int(parts[0])
x_center, y_center, width, height = map(float, parts[1:])
bboxes.append([x_center, y_center, width, height])
class_labels.append(class_id)
for i in range(num_augments):
augmented = transform(image=image, bboxes=bboxes, class_labels=class_labels)
augmented_image = augmented['image']
augmented_bboxes = augmented['bboxes']
augmented_class_labels = augmented['class_labels']
output_image_path = os.path.join(output_dir, f"{os.path.splitext(os.path.basename(image_path))[0]}_aug_{i}.jpg")
output_label_path = os.path.join(output_dir, f"{os.path.splitext(os.path.basename(image_path))[0]}_aug_{i}.txt")
cv2.imwrite(output_image_path, augmented_image)
with open(output_label_path, 'w') as f:
for j in range(len(augmented_bboxes)):
bbox = augmented_bboxes[j]
class_id = augmented_class_labels[j]
f.write(f"{class_id} {bbox[0]} {bbox[1]} {bbox[2]} {bbox[3]}\n")
增强训练集
train_image_dir = ‘climbing_detection_dataset/images/train’
train_label_dir = ‘climbing_detection_dataset/labels/train’
output_dir = ‘climbing_detection_dataset/augmented/train’
os.makedirs(output_dir, exist_ok=True)
for image_file in os.listdir(train_image_dir):
image_path = os.path.join(train_image_dir, image_file)
label_path = os.path.join(train_label_dir, image_file.replace(‘.jpg’, ‘.txt’))
augment_image(image_path, label_path, output_dir, num_augments=5)
增强验证集
val_image_dir = ‘climbing_detection_dataset/images/val’
val_label_dir = ‘climbing_detection_dataset/labels/val’
output_dir = ‘climbing_detection_dataset/augmented/val’
os.makedirs(output_dir, exist_ok=True)
for image_file in os.listdir(val_image_dir):
image_path = os.path.join(val_image_dir, image_file)
label_path = os.path.join(val_label_dir, image_file.replace(‘.jpg’, ‘.txt’))
augment_image(image_path, label_path, output_dir, num_augments=5)
九、注意事项
数据集路径:确保数据集路径正确,特别是图片和标注文件的路径。
硬件资源:训练大型模型可能需要较多的计算资源,建议使用 GPU。
超参数调整:根据实际情况调整学习率、批量大小等超参数,以获得更好的训练效果。
数据增强:为了提高模型的泛化能力,可以在训练过程中使用数据增强技术,如随机裁剪、翻转等。
十、引用数据集
如果你需要在论文中引用这个数据集,可以参考以下格式:
bibtex
深色版本
@article{climbing_detection_dataset,
title={Climbing Detection Dataset},
author={Author Name},
journal={Journal Name},
year={2023},
note={Available at: \url{https://example.com/climbing_detection_dataset}}
}
请根据实际的数据集来源和作者信息进行修改。
希望这些步骤和脚本能帮助你成功训练一个人员翻越或跨越围栏风险识别检测模型。