如何使用YOLOv8训练包含敌我头身标签CS2数据集。数据集10万张纯人工标图片,标签分为敌我头身。使用YOLOv8进行目标检测,模型能够达到高精度CS2数据集,10w纯人工标注,敌我头身标签

在这里插入图片描述在这里插入图片描述

在这里插入图片描述
好的,让我们继续详细讨论如何使用YOLOv8训练一个包含敌我头身标签的CS2数据集。这个数据集包含10万张纯人工标注的图片,标签分为敌我头身。我们将使用YOLOv8进行目标检测,并确保模型能够达到高精度。

1. 数据集准备

确保你的数据集按照以下结构组织:

cs2_detection/
│
├── images/
│   ├── train/
│   ├── val/
│   └── test/
│
├── labels/
│   ├── train/
│   ├── val/
│   └── test/
│
└── data.yaml

2. 数据集标注

确保你的数据集已经标注,并且标注文件是YOLO格式的txt文件。每个标注文件包含以下格式:

class_id x_center y_center width height

例如,一个标注文件可能如下所示:

0 0.5 0.5 0.2 0.2  # 敌人头身
1 0.6 0.6 0.1 0.1  # 我方头身

3. 数据配置文件 (data.yaml)

创建一个data.yaml文件,用于配置数据集:

train: ./cs2_detection/images/train
val: ./cs2_detection/images/val
test: ./cs2_detection/images/test

nc: 2  # 类别数量(2类)
names: ['enemy_head', 'ally_head']  # 类别名称

4. 安装YOLOv8

确保你已经安装了YOLOv8。你可以使用以下命令安装:

pip install ultralytics

5. 训练模型

使用以下命令训练模型:

python train.py --data ./cs2_detection/data.yaml --img 640 --batch 16 --epochs 100 --name yolov8_custom_cs2_detection --weights yolov8n.pt

6. 示例代码

6.1. 数据预处理示例
import os
import shutil

def prepare_data(input_dir, output_dir, split='train'):
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    
    for filename in os.listdir(input_dir):
        if filename.endswith(('.jpg', '.png', '.jpeg')):
            img_path = os.path.join(input_dir, filename)
            label_path = os.path.join(input_dir, filename.replace('.jpg', '.txt'))
            if os.path.exists(label_path):
                shutil.copy(img_path, os.path.join(output_dir, 'images', split))
                shutil.copy(label_path, os.path.join(output_dir, 'labels', split))

# 示例用法
prepare_data('./raw_data/train', './cs2_detection', split='train')
prepare_data('./raw_data/val', './cs2_detection', split='val')
prepare_data('./raw_data/test', './cs2_detection', split='test')
6.2. 训练模型示例
import torch
from ultralytics import YOLO

# 加载预训练模型
model = YOLO('yolov8n.pt')

# 配置数据集
data_yaml_path = './cs2_detection/data.yaml'

# 训练模型
model.train(data=data_yaml_path, epochs=100, imgsz=640, batch=16, name='yolov8_custom_cs2_detection')

7. 评估模型

评估训练好的模型:

python val.py --data ./cs2_detection/data.yaml --weights runs/train/yolov8_custom_cs2_detection/weights/best.pt

8. 运行和调试

确保你的环境配置正确,并且所有依赖项都已安装。运行模型训练和评估时,确保模型文件路径正确,并且数据集路径正确。

9. 使用模型进行检测

假设你已经训练好了模型,并且保存了权重文件(例如best.pt),你可以使用以下代码进行检测:

import cv2
import torch
from ultralytics import YOLO

# 加载模型
model = YOLO('runs/train/yolov8_custom_cs2_detection/weights/best.pt')

# 加载图片
image_path = 'path_to_your_image.jpg'
image = cv2.imread(image_path)

# 进行检测
results = model(image)

# 显示结果
for result in results:
    boxes = result.boxes
    for box in boxes:
        x1, y1, x2, y2 = box.xyxy[0].tolist()
        cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
        label = model.names[int(box.cls[0])]
        cv2.putText(image, label, (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)

# 显示图像
cv2.imshow('Detection Result', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

10. GUI 应用程序

如果你需要构建一个GUI应用程序,可以参考之前的Tkinter示例,进行相应的调整。

总结

通过上述步骤,你可以使用YOLOv8训练一个高精度的模型来检测CS2数据集中的敌我头身。确保数据集标注正确,并且模型训练参数设置合理,可以进一步提高模型的精度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值