适应多场景的客流量统计-人流量统计算法

本文介绍了深度学习在商场、展厅等场所的人流量统计中的重要作用,通过CrowdNet、多面注意力网络(MAN)和多尺度注意力网络等算法,实现精确的客流估算,辅助商业决策并确保公共场所安全。实验表明,这些方法在多个挑战性数据集上展现出优越性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在商场、展厅、景区等受人流量影响较大的场所,流量统计算法可以快速获取流量数据和动态趋势,辅助评估店铺和部分活动的效果,帮助商业决策。另外,在地铁站、火车站、机场等公共场所。实时检测人数可以及时预警高密度人群,实施分流限流等措施,减少安全事故的发生。更多图像识别的应用与算法汇总算法见文章:https://www.quickconn.net.cn/#/insight/showPaper.html?paperId=54

图1 人流量统计效果

下面汇总一些效果较好的人流量统计算法。

CrowdNet: A Deep Convolutional Networkfor Dense Crowd Counting

B. Lokesh和S. Srinivas等人提出了一个新的深度学习框架,用于从高度密集的静态图像中估计人群密度人群。他们使用结合了深度、浅度的完全卷积网络,来预测一个给定人群图像的密度图。这样的组合被用来有效地捕捉高层次的语义信息 (脸部/身体检测器)和低层次的特征&#

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值