2024深度学习发论文&模型涨点之——CNN+LSTM+Attention
CNN+LSTM+Attention是一种深度学习模型,它结合了卷积神经网络(CNN)、长短期记忆网络(LSTM)和注意力机制(Attention)的优势,用于处理序列数据和时间序列预测任务。
这种模型因其强大的特征提取和序列建模能力,被广泛应用于各种时空数据的预测和分析任务,如短期负荷预测、航空发动机剩余使用寿命预测、股票价格预测和电机故障检测等。
比如在短期负荷预测(STLF)中,有研究首次采用LSTM-CNN结合的自注意力机制(SAM)模型,通过仅使用负荷数据,实现一种基于输出维度的混合预测框架,并使用卷积核来提取用户的随机性,解决非平稳特性问题。
我整理了一些CNN+LSTM+Attention【论文+代码】合集,需要的同学公人人人号【AI创新工场】自取。
论文精选
论文1:
Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction
基于注意力机制的CNN-LSTM和XGBoost混合模型用于股票预测
方法
ARIMA预处理:首先通过ARIMA模型对股票数据进行预处理,以输出更有效的状态描述序列。
Attention-based CNN-LSTM模型:采用基于注意力机制的CNN-LSTM模型作为序列到序列框架的编码器和解码器。模型首先使用卷积提取原始股票数据的深层特征,然后使用长短期记忆网络挖掘长期时间序列特征。
XGBoost微调:最后采用XGBoost模型进行微调,以充分挖掘股票市场在多个时期的信息。
创新点
混合模型结构:将ARIMA模型、卷积神经网络、注意力机制、长短期记忆网络和XGBoost回归器以非线性关系集成,提高了预测精度。
多时期信息挖掘:模型能够充分挖掘股票市场在多个时期的信息,提高了预测的准确性。
性能提升:实验结果表明,该混合模型的预测精度相对较高,能够帮助投资者或机构做出决策,实现扩大收益和避免风险的目的。
论文2:
Multi-fidelity fusion for soil classification via LSTM and multi-head self-attention CNN model
通过LSTM和多头自注意力CNN模型进行土壤分类的多保真度融合
方法
LSTM数据映射:使用LSTM机器将低保真度的锥形穿透试验(CPT)数据映射到高保真度的实验室测试(LT)数据。
多头自注意力CNN(MSCNN):将融合后的数据输入到多头自注意力卷积神经网络(MSCNN)进行土壤分类。
损失函数:开发了一个严格的损失函数来训练LSTM-MSCNN模型,以实现端到端的工作流程。
创新点
多保真度数据融合:通过LSTM机器翻译方法将CPT数据映射到LT数据,实现了不同分辨率数据之间的自动数据融合。
自注意力机制:采用多头自注意力机制来捕获MF输入特征内不同类型依赖关系,提高了复杂模式和结构的数据表示能力。
性能提升:与传统方法相比,LSTM-MSCNN模型在真实地面剖面预测中显示出显著的改进。
论文3:
On the V2G capacity of shared electric vehicles and its forecasting through MAML‐CNN‐LSTM‐Attention algorithm
共享电动汽车的V2G容量及其通过MAML-CNN-LSTM-Attention算法的预测
方法
MAML优化:使用模型无关元学习(MAML)优化网络的初始参数,以快速适应不同功能社区旅行习惯引起的特征变化。
CNN-LSTM-Attention模型:使用两层卷积神经网络(CNN)与长短期记忆神经网络(LSTM)和注意力机制相结合,提取重要历史时刻的时空间特征。
数据集构建:基于共享汽车租赁服务数据构建共享电动汽车的可调度容量数据集。
创新点
MAML多任务学习:通过MAML算法,模型能够快速适应不同日期类型和不同功能区域的预测任务,提高了模型的泛化能力。
CNN特征提取:引入CNN来捕获特征的动态变化,降低了非线性模型的数据复杂性,从而减少了不确定性的影响。
性能提升:与之前使用的模型相比,MAML降低了平均绝对百分比误差(MAPE)1.04%,模型的稳定性和准确性得到了显著提升。
论文4:
Spatial-temporal simulation and prediction of root zone soil moisture based on Hydrus-1D and CNN-LSTM-Attention in the Yutian Oasis, Southern Xinjiang, China
基于Hydrus-1D和CNN-LSTM-Attention的中国新疆南部玉田绿洲根区土壤湿度的时空模拟和预测
方法
Hydrus-1D物理模型:使用Hydrus-1D物理模型模拟时空垂直土壤湿度的综合数据集。
CNN-LSTM-Attention模型:提出了一个CNN-LSTM-Attention(CLA)模型,用于预测根区土壤湿度(RZSM)。
多变量时间序列数据:利用气象数据和MODIS植被特征参数作为预测变量,训练和验证CLA模型。
性能评估:使用R²、RMSE、MAE和MAPE等指标评估模型在预测RZSM方面的准确性。
创新点
物理模型与深度学习结合:将Hydrus-1D物理模型与CNN-LSTM-Attention深度学习技术相结合,提供了更全面和准确的根区土壤湿度时空变化理解。
CLA模型性能提升:与传统的LSTM和CNN-LSTM模型相比,CLA模型在根区土壤湿度预测方面的性能显著提升,特别是在80-100 cm深度,R²值接近0.9298,RMSE降低了49%和57%。
多变量时间序列数据利用:利用多变量时间序列数据进行RZSM预测,揭示了多个因素与RZSM之间的非线性时空相关性。