今天给大家介绍一个超强大的深度学习模型:CNN-LSTM-Attention!
这个模型结合了三种不同类型的神经网络架构,充分挖掘了数据中的空间和时间信息,不仅能捕捉数据的局部特征和长期依赖关系,还可以自动关注输入数据中最重要的部分,在提高预测准确性和鲁棒性方面起到了非常重要的作用。
因此它也是解决时间序列预测和其他序列数据处理任务的首选,关于它的研究在各大顶会上热度飞升,比如分类准确率近100%的CBLA模型等。
如果有论文er感兴趣,需要这方面的参考以便找idea,我这边也提供9篇CNN-LSTM-Attention最新论文,开源的代码都附上了,希望可以给各位的论文添砖加瓦。
论文原文+开源代码需要的同学看文末
AdeepLSTM-CNNbasedonself-attention mechanism with input data reduction for short-term load forecasting
方法:论文介绍了一个深度学习模型,该模型基于长短期记忆网络、卷积神经网络以及自注意力机制(self-attention mechanism,简称SAM)来进行短期负荷预测(STLF)。实验证明该模型在减少输入数据的同时提升了预测精度,且优于传统基准模型超过10%。