时间序列的可解释性丨最新成果+源码分享

2024深度学习发论文&模型涨点之——时间序列可解释性

时间序列的可解释性是指在时间序列分析中,使模型的预测结果可靠、透明且易于理解的能力。它有助于增强用户对模型的信任,促进更明智的决策,并便于调试和风险管理。

当前时间序列可解释性的研究已经取得了一些进展,包括提出了多种方法来提升模型的可解释性。例如,通过虚拟检查层将时间序列数据转换为易于解释的表示形式,并利用局部可解释技术(如逐层相关性传播LRP)将相关性归因传递到这一表示。此外,还有研究利用LIME和SHAP等模型不可知的可解释性技术来实现时间序列预测问题的可解释性。

我整理了一些时间序列可解释性【论文+代码】合集,需要的同学公人人人号【AI创新工场】自取。

论文精选

论文1:

BasisFormer: Attention-based Time Series Forecasting with Learnable and Interpretable Basis

BasisFormer:基于注意力机制的时间序列预测,具有可学习和可解释的基

方法

自监督学习获取基:通过自适应自监督学习从数据中获取基,将时间序列的历史和未来部分视为两个不同的视图,并采用对比学习来学习基。

Coef模块:设计了一个Coef模块,通过双向交叉注意力计算时间序列和基之间的相似性系数,以实现时间序列和基之间的灵活关联。

Forecast模块:开发了一个Forecast模块,根据相似性系数选择和整合未来视图中的基,以实现准确的未来预测。

图片

创新点

自监督基学习:首次提出了一种自监督方法来学习基,通过将时间序列的历史和未来部分视为两个不同的视图,并采用对比学习,确保时间序列选择的基在两个视图中保持一致。

Coef和Forecast模块:设计了Coef和Forecast模块,根据测量时间序列和历史视图中基的相似性系数,选择和合并未来视图中的相关基。

性能提升:在六个数据集上进行了广泛的实验,发现该模型在单变量和多变量预测任务中分别比之前的最佳方法提高了11.04%和15.78%。

论文2:

Diffusion-TS: Interpretable Diffusion for General Time Series Generation

Diffusion-TS:用于通用时间序列生成的可解释扩散

方法

Diffusion-TS框架:提出了一种基于扩散的框架Diffusion-TS,用于生成高质量的多变量时间序列样本。

季节-趋势分解技术:结合季节-趋势分解技术和去噪扩散模型,通过傅里叶基训练目标和深度分解架构的嵌入,使模型能够从数据中学习有意义的时间属性。

重建的采样方法:设计了一种基于重建的采样方法,使Diffusion-TS能够灵活应用于各种条件生成任务,如时间序列插值和预测。

图片

创新点

Diffusion-TS框架:提出了一种时间序列生成框架Diffusion-TS,结合季节-趋势分解技术和去噪扩散模型,通过傅里叶基训练目标和深度分解架构的嵌入,使框架成为一种高效且可解释的通用时间序列生成解决方案。

条件生成的灵活性:对于条件生成,采用基于目标度量(如重建)的实例感知引导策略,使Diffusion-TS能够以即插即用的方式适应不同的可控生成任务。

性能提升:实验表明,Diffusion-TS能够在具有挑战性的设置下生成真实的时间序列,同时保持高度的多样性和新颖性,并且与现有的扩散方法竞争。

图片

论文3:

Evaluation of post-hoc interpretability methods in time-series classification

评估事后可解释性方法在时间序列分类中的应用

方法

评估框架和指标:提出了一个框架和定量指标,用于评估现有事后可解释性方法在时间序列分类中的性能。

合成数据集设计:设计了一个具有已知判别特征和可调复杂性的合成数据集,解决了文献中识别的多个缺点,包括对人类判断的依赖、重新训练和在遮蔽样本时数据分布的偏移。

相关性识别和归因:通过两个新指标AUC ˜Stop和F1 ˜S,量化可解释性方法的相关性识别性能,并可用于对可解释性方法进行排名。

图片

创新点

评估方法和指标:提出了一个新的评估方法和一组评估指标,用于事后可解释性,以回答哪种方法产生的可解释性图更接近神经网络实际用于做出预测的图。

合成数据集:提供了一个新的合成数据集,用于评估可解释性方法,该数据集迫使神经网络学习时间依赖性,而不是学习静态信息,并且数据集的判别部分是事先已知的。

性能提升:通过避免显式嵌入到Krein空间和基于特征分解的构建新的内积,提高了算法的计算效率。

图片

论文4:

Z-Time: efficient and effective interpretable multivariate time series classification

Z-Time:高效且有效的可解释多变量时间序列分类

方法

时间抽象:将时间序列转换为事件序列,使用不同的离散化技术。

事件间隔序列:将连续具有相同标签的事件合并为事件间隔,并按时间顺序排序。

时间关系特征:利用生成的事件间隔的时间关系,并使用它们的频率作为分类特征。

线性分类器:基于事件间隔的时间关系特征,使用线性模型进行分类。

图片

创新点

可解释性:通过事件间隔及其跨多个时间序列维度的时间关系创建可解释特征。

效率提升:Z-Time比现有的可解释多变量时间序列分类器快一个数量级以上。

鲁棒性:Z-Time的结构自然处理缺失数据,无需插值,实验表明Z-Time比竞争对手更鲁棒。

重复性:代码在线可用,包括合成数据集生成器以及所有使用的数据集和实验结果。

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值