2025深度学习发论文&模型涨点之——特征融合
特征融合(Feature Fusion)作为多源信息整合的关键技术,在提升模型性能、增强决策可靠性和拓展应用边界等方面扮演着至关重要的角色。随着多模态数据在智能交通、遥感监测、多媒体分析等领域的日益涌现,单一特征提取方法已难以充分挖掘数据的潜在价值,而融合多种特征提取技术的综合策略逐渐成为研究前沿。然而,如何在不同特征维度间实现高效协同、平衡融合后的特征复杂度与有效性,仍是亟待攻克的难题。
近年来,基于多模态数据的特征融合方法在强化模型适应性的同时,也优化了特征的表征能力。例如,将视觉特征与文本特征融合的跨模态学习方法,显著提升了图像检索和视频理解的准确性。此外,深度学习技术的飞速发展为特征融合提供了强大的工具支持,如多任务学习框架下的特征共享与特定任务特征的差异化提取,使得特征融合能够更好地适应复杂多变的应用场景,进一步拓展了其在智能安防、精准营销和医疗影像分析等领域的应用潜力。
我整理了一些特征融合【论文+代码】合集,需要的同学公人人人号【AI创新工场】发525自取。
论文精选
论文1:
EMIFF: Enhanced Multi-scale Image Feature Fusion for Vehicle-Infrastructure Cooperative 3D Object Detection
EMIFF:用于车路协同3D目标检测的增强型多尺度图像特征融合
方法
多尺度交叉注意力(MCA)模块:通过跨尺度特征选择和空间偏移校正,解决多视角图像融合中的姿态误差问题。
相机感知通道掩码(CCM)模块:利用相机参数生成通道掩码,增强图像特征,进一步纠正位置误差。
特征压缩(FC)模块:通过通道和空间压缩减少传输成本,同时保留关键信息。
点采样体素融合:将增强后的图像特征投影到3D空间,生成统一的体素特征,用于后续的3D目标检测。
创新点
多尺度交叉注意力(MCA)模块:通过跨尺度特征选择和空间偏移校正,显著提高了目标检测的准确性。与基线方法相比,AP3D和APBEV分别提升了1.05和0.59。
相机感知通道掩码(CCM)模块:利用相机参数生成通道掩码,增强了图像特征的鲁棒性。与基线方法相比,AP3D和APBEV分别提升了0.38和0.18。
特征压缩(FC)模块:通过通道和空间压缩减少了传输成本,同时保持了较高的检测性能。与基线方法相比,传输成本降低了约90%,而AP3D和APBEV分别提升了1.61和1.39。
整体性能提升:在DAIR-V2X-C数据集上,EMIFF实现了15.61的AP3D和21.44的APBEV,显著优于现有的早期融合和晚期融合方法。
论文2:
Multi-interactive Feature Learning and a Full-time Multi-modality Benchmark for Image Fusion and Segmentation
多交互特征学习及全时多模态图像融合与分割基准
方法
多交互特征学习架构(SegMiF):通过融合子网络和分割子网络的级联结构,实现图像融合和分割任务的联合优化。
层次化交互注意力(HIA)模块:通过语义导向和模态导向的多头注意力机制,实现融合网络和分割网络之间的细粒度特征交互。
动态权重因子:自动调整融合和分割任务的权重,平衡特征交互,避免手动调整的复杂性。
全时多模态基准(FMB):构建了一个包含1500对红外和可见光图像的多模态基准数据集,覆盖多种复杂场景和天气条件。
创新点
多交互特征学习架构(SegMiF):通过联合优化图像融合和分割任务,实现了视觉效果和语义分割性能的双重提升。与现有方法相比,mIoU平均提升了7.66%。
层次化交互注意力(HIA)模块:通过细粒度的特征交互,显著提高了分割任务的性能。与直接特征聚合方法相比,mIoU提升了2.5%。
动态权重因子:自动调整任务权重,避免了手动调整的复杂性,同时提高了融合和分割任务的性能。
全时多模态基准(FMB):提供了丰富的多模态图像对和详细的像素级标注,为相关研究提供了宝贵的资源。
论文3:
Domain Generalization for Activity Recognition via Adaptive Feature Fusion
通过自适应特征融合实现活动识别的领域泛化
方法
自适应特征融合(AFFAR):通过学习领域不变和领域特定的特征表示,提高模型在未见测试数据上的泛化能力。
领域特定表示学习:通过加权聚合不同领域的特征,构建统一的特征表示,适应未见目标领域的数据。
领域不变表示学习:通过最大均值差异(MMD)最小化不同领域之间的分布差异,学习可迁移的特征表示。
端到端训练:在统一的深度神经网络中优化整个模型,实现领域特定和领域不变特征的动态融合。
创新点
自适应特征融合(AFFAR):通过结合领域特定和领域不变特征,显著提高了模型在未见测试数据上的泛化能力。在三个公共HAR数据集上,AFFAR平均F1分数分别比第二好的方法提升了2.5%、1.7%和3.7%。
领域特定表示学习:通过加权聚合不同领域的特征,有效捕捉了每个领域的特定信息,提高了模型的适应性。
领域不变表示学习:通过MMD最小化不同领域之间的分布差异,提高了模型的泛化能力。与DANN和CORAL等其他领域不变学习方法相比,MMD在计算效率和性能上表现更优。
理论支持:从理论上证明了AFFAR的有效性,通过最小化加权源风险和源目标分布差异,实现了对未见领域的风险上界估计。