Bert实战:使用Bert实现文本分类。

链接:bert-base-chinese at main (huggingface.co),将下图中,画红框的文件下载下来。在项目的根目录新建chinese_wwm_pytorch文件夹,将下载的文件放进去。

image-20211022153525011

新建outs文件夹,将config.json、tokenizer.json、tokenizer_config.json和vocab.txt复制到outs文件夹中。

注:模型的类型在configuration_bert.py中查看。选择合适的模型很重要,比如这次是中文文本的分类。选择用bert-base-uncased只能得到86%的准确率,但是选用bert-base-chinese就可以轻松达到96%。

image-20211025192732926

4、修改bert_cnews.py代码

====================================================&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值