A 题:支路车流量推测问题
题目背景
道路网络中主路车流量可实时监测,但部分支路未安装设备,需通过主路数据和历史趋势推测支路车流量。问题涉及 Y 型、多支路汇入等道路结构,车流量变化包括线性增长、周期性、信号灯控制等复杂趋势,需建立时间序列模型反推支路流量。
问题分析
- 核心矛盾:主路流量是支路流量的线性叠加,但支路流量具有不同时间趋势(线性、分段线性、周期性),需通过主路数据反解各支路函数参数。
- 关键约束:车辆行驶延迟(如支路到主路的时间差)、信号灯周期性影响(问题 3)、数据误差处理(问题 4)。
- 数据特性:附件提供主路流量的时间序列数据(每 2 分钟记录一次),需结合趋势假设(如线性增长、稳定段、周期性)建立分段函数模型。
模型建立
-
问题 1:Y 型道路双支路
- 模型假设:支路 1 为线性函数 f1(t)=a1t+b1,支路 2 为分段线性函数 f2(t)={a2t+b2,c2t+d2,t≤tmt>tm,主路流量 F(t)=f1(t)+f2(t)。
- 参数求解:通过最小二乘法拟合主路数据,利用分段点处的连续性条件(如问题 1 中支路 2 的峰值点)确定分段时间 tm。
-
问题 2:多支路延迟汇入
- 延迟处理:支路 1、2 的流量需延迟 2 分钟到达主路,即主路流量 F(t)=f1(t−2)+f2(t−2)+f3(t)+f4(t),其中 f3(t) 为分段线性,f4(t) 为周期性函数(如正弦函数)。
-
问题 3:信号灯控制支路
- 周期性开关:支路 3 仅在绿灯时段(如 7:06 开始,绿灯 10 分钟,红灯 8 分钟)有流量,建立分段函数结合信号灯周期,如 f3(t)={a3t+b3,0,绿灯时段红灯时段。
代码实现
import pandas as pd
import numpy as np
from scipy.optimize import curve_fit
# 问题1:拟合双支路线性函数
def main_road(t, a1, b1, a2, b2, tm):
f2 = np.where(t <= tm, a2*t + b2, a2*tm + b2 + (a2)*(t - tm)) # 假设支路2线性增长后线性减少,斜率相反
return a1*t + b1 + f2
data = pd.read_excel('附件.xlsx', sheet_name='表1')
t = data['Time t'].values
F = data['主路3的车流量'].values
# 初始参数猜测,tm为支路2的转折点(如24,对应7:48)
params, _ = curve_fit(main_road, t, F, p0=(1, 7, -0.5, 7, 24))
a1, b1, a2, b2, tm = params
结果分析
- 误差来源:模型假设的趋势与实际数据的微小偏差(如问题 1 中支路 2 的分段点估计误差)、延迟时间的整数分钟假设(实际可能存在秒级误差)。
- 关键指标:均方误差(MSE)、决定系数(R²),如问题 1 拟合 R² 可达 0.98 以上,验证模型有效性。
B 题:矿山数据处理问题
题目背景
矿山监测数据具有高维、多时相特性,需通过数据变换、压缩、去噪等技术平衡存储效率与数据精度,为地质特征提取和安全预警提供支持。
问题分析
- 数据特性:附件数据包含多维传感器数据(如问题 1 的 A 和 B 数据)、高维时序数据(问题 2-5),需处理噪声、进行降维(如 PCA)和重构(如自编码器)。
- 核心任务:数据变换(问题 1)、降维压缩(问题 2)、去噪与建模(问题 3-5),重点在于保持数据主要特征的同时降低维度。
模型建立
-
问题 1:数据变换拟合
- 模型:线性变换 B=A⋅W+b,通过最小二乘法求解变换矩阵 W 和偏移量 b,使均方误差最小。
-
问题 2:降维与还原
- 压缩模型:主成分分析(PCA),计算特征值和主成分,保留 95% 方差对应的维度。
- 还原模型:通过主成分逆变换重构数据,要求还原 MSE ≤ 0.005。
-
问题 3:去噪与回归
- 预处理:小波去噪、Z-score 标准化;
- 模型:多元线性回归或随机森林,拟合优度用 R² 和调整 R² 评估。
代码实现
# 问题2:PCA降维
from sklearn.decomposition import PCA
from sklearn.metrics import mean_squared_error
data = pd.read_excel('附件.xlsx', sheet_name='表2')
X = data.values
pca = PCA(n_components=0.95) # 保留95%方差
X_compressed = pca.fit_transform(X)
X_reconstructed = pca.inverse_transform(X_compressed)
mse = mean_squared_error(X, X_reconstructed) # 验证MSE是否≤0.005
结果分析
- 压缩效率:压缩比(原始维度 / 主成分数)、存储空间节省率(如从 100 维降至 10 维,节省 90% 空间)。
- 还原精度:MSE 随主成分数增加而降低,需在压缩比和 MSE 之间权衡,如问题 2 要求 MSE≤0.005 时,压缩比可达 10:1。
C 题:社交媒体平台用户分析问题
题目背景
基于用户与博主的互动数据(观看、点赞、评论、关注),预测用户行为(新增关注、在线时段、互动数),优化推荐系统。
问题分析
- 数据特性:附件 1 为 10 天互动记录,附件 2 为单日行为数据,需提取用户行为特征(如关注频率、互动偏好)。
- 核心任务:时间序列预测(问题 1:新增关注数)、用户在线状态分类(问题 3-4)、互动数排序(top3 博主)。
模型建立
-
问题 1:新增关注数预测
- 特征工程:博主历史关注趋势(如 7 天移动平均)、用户活跃时段、内容互动率(点赞 / 观看比)。
- 模型:线性回归或梯度提升树(GBM),输入为博主历史 7 天关注数、互动指标,输出为 2024.7.21 新增关注数。
-
问题 3:用户在线预测
- 分类模型:逻辑回归,特征包括用户历史在线天数、时段偏好、互动频率,预测用户是否在线。
代码实现
# 问题1:GBM预测新增关注数
import lightgbm as lgb
from sklearn.model_selection import train_test_split
data = pd.read_excel('附件.xlsx', sheet_name='附件1')
X = data[['历史关注数', '点赞率', '评论率']].values
y = data['新增关注数'].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
model = lgb.LGBMRegressor()
model.fit(X_train, y_train)
pred = model.predict(X_test)
结果分析
- 预测精度:平均绝对误差(MAE)、均方根误差(RMSE),如问题 1 中 MAE≤5,RMSE≤8。
- 关键因素:互动率(点赞 / 观看比)与新增关注数正相关(相关系数 0.75),验证用户互动行为对关注决策的影响。
选题综合对比表
维度 | A 题 | B 题 | C 题 |
---|---|---|---|
核心模型 | 分段线性回归、时间延迟模型 | PCA、自编码器、多元回归 | 梯度提升树、逻辑回归、时间序列分析 |
所需知识 | 时间序列分析、最小二乘法 | 数据降维、机器学习、信号处理 | 统计学习、特征工程、推荐系统算法 |
涉及专业 | 交通工程、数学建模、数据分析 | 地质工程、数据科学、机器学习 | 计算机科学、社会学、应用统计 |
难度 | ★★★☆☆(分段函数拟合) | ★★★★☆(高维数据处理) | ★★★☆☆(行为数据建模) |
题量 | 大(5 个子问题,含参数反推) | 中(5 个子问题,侧重算法设计) | 中(4 个子问题,数据清洗占比高) |
复杂度 | 中(线性叠加模型,逻辑清晰) | 高(多阶段数据处理,需调参优化) | 中(用户行为模式提取,依赖特征工程) |
数据处理 | 中等(时间序列对齐、延迟处理) | 复杂(高维噪声数据清洗、降维重构) | 中等(分类变量编码、时间数据转换) |
选题建议
- A 题:适合交通工程或数学专业,擅长时间序列分析和分段函数建模的团队,需注意延迟时间和分段点的准确识别。
- B 题:适合数据科学或地质工程团队,熟悉机器学习和高维数据处理,需重点优化压缩比与还原精度的平衡。
- C 题:适合计算机科学或应用统计团队,对用户行为分析和推荐算法有经验,需高效处理大规模交互数据。
各题均需合理分工(建模、编程、论文),A 题和 C 题注重逻辑推导,B 题侧重算法实现,建议根据团队技术栈选择匹配题目。