AI图片生成技术的核心在于使用深度学习模型,如生成对抗网络(GAN)和扩散模型(Diffusion model)。这些模型通过学习大量图像数据集,能够理解图像内容和风格,并根据输入的文本描述生成新的图像。
1. **生成对抗网络(GAN)**:GAN由两部分组成,生成器(Generator)和判别器(Discriminator)。生成器负责创造图像,判别器负责判断图像是否真实。两者相互对抗,通过不断的训练,生成器能够产生越来越逼真的图像。
2. **扩散模型(Diffusion model)**:与GAN不同,扩散模型通过模拟图像从噪声到清晰图像的转换过程来生成图像。它通过逐步去除噪声,最终得到有意义的图像。这种方法在生成高质量图像方面表现出色,尤其是在艺术风格和细节表现上。
AI图片生成技术的发展可以追溯到早期的简单模型,如吴恩达和Jeff Dean的猫脸生成模型。随后,GAN的出现推动了AI绘画技术的发展,但同时也存在一