半天入门!锂电池剩余寿命预测(Python)

往期精彩内容:

时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较

全是干货 | 数据集、学习资料、建模资源分享!

EMD变体分解效果最好算法——CEEMDAN(五)-CSDN博客

拒绝信息泄露!VMD滚动分解 + Informer-BiLSTM并行预测模型-CSDN博客

风速预测(一)数据集介绍和预处理_风速数据在哪里下载-CSDN博客

风速预测(二)基于Pytorch的EMD-LSTM模型-CSDN博客

风速预测(三)EMD-LSTM-Attention模型-CSDN博客

风速预测(四)基于Pytorch的EMD-Transformer模型-CSDN博客

风速预测(五)基于Pytorch的EMD-CNN-LSTM模型-CSDN博客

风速预测(六)基于Pytorch的EMD-CNN-GRU并行模型-CSDN博客

单步预测-风速预测模型代码全家桶-CSDN博客

CEEMDAN +组合预测模型(BiLSTM-Attention + ARIMA)-CSDN博客

CEEMDAN +组合预测模型(Transformer - BiLSTM + ARIMA)-CSDN博客

CEEMDAN +组合预测模型(CNN-LSTM + ARIMA)-CSDN博客

CEEMDAN +组合预测模型(CNN-Transformer + ARIMA)-CSDN博客

多特征变量序列预测(一)——CNN-LSTM风速预测模型-CSDN博客

多特征变量序列预测(二)——CNN-LSTM-Attention风速预测模型-CSDN博客

多特征变量序列预测(三)——CNN-Transformer风速预测模型-CSDN博客

多特征变量序列预测(四) Transformer-BiLSTM风速预测模型-CSDN博客

多特征变量序列预测(五) CEEMDAN+CNN-LSTM风速预测模型-CSDN博客

多特征变量序列预测(六) CEEMDAN+CNN-Transformer风速预测模型-CSDN博客

基于麻雀优化算法SSA的CEEMDAN-BiLSTM-Attention的预测模型-CSDN博客

基于麻雀优化算法SSA的CEEMDAN-Transformer-BiGRU预测模型-CSDN博客

简介:

本期我们推出基于 Python 的锂电池剩余寿命预测合集:基于LSTM、CNN、BiGRU、TCN、Transformer、CNN-Transformer、Transformer-BiLSTM等系列预测模型全家桶,并提供丰富的实验:

● 数据集:NASA锂离子电池寿命试验公开数据集

● 环境框架:python 3.9  pytorch 2.1 及其以上版本均可运行

● 提供实验:模型对比试验、窗口值对比实验、划分比例对比实验、电池组对比实验

● 价格:限时优惠--99.9(性价比极高)

● 使用对象:入门学习,论文需求者

● 代码保证:代码注释详细、即拿即可跑通。

● 配套文件:详细的环境配置安装教程,模型、参数讲解文档

包括完整流程数据代码处理:

数据集制作、数据加载、模型定义、参数设置、模型训练、模型测试、预测可视化、模型评估

全网最低价,入门锂电池剩余寿命预测最佳教程,高性价比、高质量代码,大家可以了解一下:(所有全家桶模型会不断加入新的模型进行更新!后续会逐渐提高价格,越早购买性价比越高!!!一次购买,享受永久免费更新福利!

前言

实验采用美国国家航天局(NASA)艾姆斯氏研究中心(Ames Research Center)的锂离子电池寿命试验公开数据 集,选取 B0005、B0006、B0007 以及 B0018 四个电池的实验数据进行仿真验证。实验环境在室温下进行,在实验 过程中首先以 1.5A 恒流充电,直到电池电压达到 4.2V,然后再恒压下继续充电,直到充电电流下降到 20mA;接着以 2A 恒流进行放电,直到电池的电压降至规定的水平。

根据寿命的 EOL 标准,当试验电池额定容量下降至 30%时,试 验停止。下图为四块锂离子电池放电过程中容量随循环次数的衰减曲线。可以看出不同类型的电池在放电过程中会 出现容量增生的现象,表明了锂电池容量序列的非平稳性、非线性性。

1 不同窗口值对比

2 不同划分比例对比

3 不同电池对比

4 不同模型对比实验

在统一划分比例和窗口值的条件下,我们提供了 14 种模型对比实验:

5 代码、数据整理如下:

### 使用RNN预测锂离子电池剩余使用寿命的方法 #### 方法概述 循环神经网络(Recurrent Neural Network, RNN)是一类专门用于处理序列数据的神经网络模型。由于锂离子电池的剩余使用寿命(Remaining Useful Life, RUL)与其历史容量衰减过程密切相关,因此可以将RNN应用于此类时间序列数据分析中。通过训练RNN模型来学习电池容量随时间的变化规律,进而实现对其未来状态的有效预测。 一种改进型RNN——长短期记忆网络(LSTM),因其具备解决传统RNN梯度消失问题的能力,在实际应用中表现尤为突出[^1]。具体而言,LSTM引入了特殊的门控机制(输入门、遗忘门和输出门),使得它可以更好地捕获长时间跨度内的依赖关系,这对于描述复杂的电池退化模式尤为重要。 另一种融合架构则结合了卷积神经网络(Convolutional Neural Networks, CNNs)与双向长短记忆神经网络(Bidirectional LSTM, BiLSTM)。此混合结构先借助CNN提取局部特征,再由BiLSTM负责建模全局上下文信息,最终达到提高预测准确性之目的[^2]。 此外,还有研究探索了更加新颖的技术路线,比如采用Transformer架构来进行类似的任务。相比上述提到的传统方法,Transformers凭借自注意力机制能够在无需显式定义窗口大小的情况下动态调整关注重点区域的位置分布特性,因而可能提供更高的灵活性以及更好的泛化性能[^3]。 以下是基于Python环境下的简单示例代码片段展示如何构建并训练一个基本形式上的单向标准版LSTM单元完成相应功能: ```python import numpy as np from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, LSTM def create_model(input_shape): model = Sequential() # 添加一层LSTM层 model.add(LSTM(50, activation='relu', input_shape=input_shape)) # 输出层 model.add(Dense(1)) return model # 假设我们已经有了预处理过的X_train和y_train数据集 input_shape = X_train.shape[1:] # 输入形状取决于您的数据维度 model = create_model(input_shape) # 编译模型 model.compile(optimizer='adam', loss='mse') # 训练模型 history = model.fit(X_train, y_train, epochs=100, batch_size=32, validation_split=0.2) ``` 以上仅作为一个基础框架供参考;针对特定应用场景还需要进一步优化超参数设置、增加正则项防止过拟合等问题考虑进去才能获得满意的结果。 #### 数据准备注意事项 为了使所建立起来的预测系统尽可能贴近真实世界情况,应当注意以下几个方面: - **标准化/归一化**:考虑到物理量纲差异较大可能导致数值计算不稳定现象发生,建议事先对原始测量值做适当变换操作。 - **滑动窗技术**:鉴于目标变量往往只对应当前时刻之后有限若干步远的状态值而非即时反馈信号本身,所以有必要设计合理的采样策略形成新的样本集合以便后续分析使用。 - **缺失值填补**:如果存在部分记录丢失情形,则需采取科学合理手段予以补全以免影响整体质量评估结论得出。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值