该文件主要围绕U - net系列算法展开,介绍了U - net、U - net++和U - net+++的相关内容,具体如下:
- 1. U - net 整体结构:采用编码解码过程,结构简单且应用广泛,最初用于医学方向,目前仍在该领域发挥重要作用。主要网络结构:引入特征拼接操作,区别于以往的加法操作,通过这种简单结构就能有效完成分割任务。
- 2. U - net++整体网络结构:进行更全面的特征融合与拼接,其思想与densenet一致,尽可能利用各类特征。
- 3.Deep Supervision:采用多输出方式,从多个位置计算损失并更新,这种方法在很多视觉任务中都适用。
- 4. 剪枝优势:由于前面有单独的监督训练,可根据速度要求快速完成剪枝,训练时使用L4效果较好。
- 5.U - net+++:仅作了解,它通过不同的max pool整合低阶特征,上采样整合高阶特征(感受野大、全局性的特征),各层统一用卷积得到64个特征图,最终组合形成全部特征。