上一篇文章中简单介绍了几个模型,包括Stable Diffusion Checkpoint, Lora, Vae, Embedding, ControlNet,虽然形成了初步印象,但此时感觉自己仍像一个小学生水平,所生成的图片需求差距较大。
怎样才能提高生成图片的质量?如何选择模型?参数含义是什么?
还是要沉下心来认真研究每一个模型的含义,每一个参数的含义,而不是从网上找个视频,跟着视频操作复现一遍。只知其然不知所以然,在此记录相关点滴,是为了自己以后查阅,也和大家一起交流。step by step,慢慢来,别着急,大概只有搞清楚底层的逻辑,才能真正提升水平。
今天把ControlNet模型认真梳理了一遍,记录此文,记录SD学习的历程。
---------------------------------------------------------------------------------------------------------------------
一、概述
ControlNet模型,指的是使用Conditional Generative Adversarial Networks"条件生成对抗网络来生成图像,它是一种用于图像生成和控制的深度学习模型,它通过精确控制图像的特定元素(如姿势、表情、手指等)来生成高质量的图像。
ControlNet模型由张吕敏开源(张吕敏,2021年本科毕业,斯坦福博士。由衷敬佩!),并支持多种预处理器和模型选择,以适应不同的生成需求。ControlNet可以通过不同的预处理器和模型来控制图像的边缘、线稿、涂鸦等特征,使得生成的图像更加符合用户的预期。例如,用户可以通过上传参考图来控制人物的姿势、控制表情或手指动作,从而生成具有特定姿势和表情的人物图像、上传线稿让AI填色渲染、控制人物的姿态、图片生成线稿等。
二、ControlNet模型的最新进展和未来趋势
ControlNet模型在2023年3月中下旬开始受到广泛关注,随着StableDiffusion的流行,ControlNet插件也得到了大量应用。最新版本ControlNet v1.1.400支持配合SDXL模型使用,进一步扩展了其应用范围。社区中也出现了许多针对SDXL的ControlNet模型,这些模型虽然没有完全遵照官方模型的命名规则,但也能从名称上看出模型的类型,如xl表示针对SDXL使用的模型。
三、ControlNet模型的安装和使用方法
安装ControlNet模型可以通过HuggingFace的代码仓库下载。ControlNet V1.1.150版本,一共有37种,目前所用的是V1.1.455版本(可私信免费提供)。下载后将其放入以下路径就可以使用了。
*\sd-webui-aki-v4.9.1\models\Stable-diffusion。
用户可以根据需要选择官方模型或社区模型,并通过不同的预处理器和模型来控制图像的特定特征。例如:
- 使用