关键词:模拟退火算法、优化算法、全局搜索、概率接受、温度退火、代码实例
1. 背景介绍
在机器学习、人工智能、优化问题等领域,寻找最优解是一个至关重要的任务。传统优化算法往往容易陷入局部最优解,而无法找到全局最优解。模拟退火算法 (Simulated Annealing, SA) 作为一种启发式全局搜索算法,能够有效地克服这一问题,在许多实际应用中展现出强大的性能。
模拟退火算法的灵感来源于金属在冷却过程中固化的物理过程。在金属冷却过程中,原子会逐渐从高能态向低能态转移,最终达到稳定状态。模拟退火算法将这一过程抽象化,将问题中的解空间看作是金属原子构成的晶体结构,目标函数看作是晶体结构的能量。
2. 核心概念与联系
模拟退火算法的核心概念是“概率接受”。在算法的迭代过程中,系统会从当前解出发,随机生成一个新的解。如果新解的能量低于当前解,则系统会直接接受新解。如果新解的能量高于当前解,系统仍然会以一定的概率接受新解,这个概率与“温度”参数有关。随着算法迭代的进行,温度逐渐降低,系统接受新解的概率也逐渐降低,最终趋向于接受能量最低的解。
核心概念与联系流程图:
grap