可解释的人工智能 (Explainable AI) 原理与代码实例讲解
关键词:可解释性, 深度学习模型, 公平性, 可信任性, 模型可视化, 对抗样本, 自解释模型, 深度学习代码实例
1. 背景介绍
1.1 问题由来
在人工智能(AI)尤其是深度学习(DL)的快速发展过程中,模型复杂性和算法黑盒化成为了主要挑战。复杂模型虽然常常在预测准确率上表现优异,但人们往往难以理解其内部机制和决策逻辑,导致应用领域对其公平性、透明性和可解释性提出了高要求。
1.2 问题核心关键点
- 可解释性:即模型决策背后的理由,包括模型如何处理输入数据,哪些特征对决策有重要影响。
- 公平性:模型在各个群体间的表现应尽量一致,避免偏见和歧视。
- 可信任性:模型应稳定且可靠,减少不确定性和误导性。
- 模型可视化:通过可视化工具和技术,直观展示模型决策过程,帮助理解模型。
- 对抗样本ÿ