可解释的人工智能 (Explainable AI) 原理与代码实例讲解

可解释的人工智能 (Explainable AI) 原理与代码实例讲解

关键词:可解释性, 深度学习模型, 公平性, 可信任性, 模型可视化, 对抗样本, 自解释模型, 深度学习代码实例

1. 背景介绍

1.1 问题由来

在人工智能(AI)尤其是深度学习(DL)的快速发展过程中,模型复杂性和算法黑盒化成为了主要挑战。复杂模型虽然常常在预测准确率上表现优异,但人们往往难以理解其内部机制和决策逻辑,导致应用领域对其公平性、透明性和可解释性提出了高要求。

1.2 问题核心关键点

  • 可解释性:即模型决策背后的理由,包括模型如何处理输入数据,哪些特征对决策有重要影响。
  • 公平性:模型在各个群体间的表现应尽量一致,避免偏见和歧视。
  • 可信任性:模型应稳定且可靠,减少不确定性和误导性。
  • 模型可视化:通过可视化工具和技术,直观展示模型决策过程,帮助理解模型。
  • 对抗样本ÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值