1. 背景介绍
1.1 问题由来
随着电商平台的崛起和消费者的消费习惯改变,个性化推荐成为电商业务中的重要环节。传统的基于标签的推荐系统已无法满足用户的需求。协同过滤算法,作为推荐系统的主流方法之一,能够通过对用户历史行为和相似用户的行为进行协同分析,从而推荐符合用户兴趣的商品。其核心思想是“物以类聚,人以群分”,利用用户之间的相似性进行推荐。
1.2 问题核心关键点
协同过滤算法主要分为两种:基于用户的协同过滤和基于物品的协同过滤。基于用户的协同过滤算法(User-Based CF)通过找到与目标用户兴趣相似的其他用户,并根据这些用户对物品的评分,预测目标用户对物品的评分。而基于物品的协同过滤算法(Item-Based CF)则通过找到与目标物品相似的其他物品,并根据这些物品被用户评分的数据,预测目标用户对物品的评分。
协同过滤算法的核心在于如何构建相似性度量,以及如何在数据稀疏问题上取得良好的推荐效果。其优缺点及改进方向主要包括:
- 优点:对稀疏矩阵的适应能力强,推荐结果较为客观。
- 缺点:需要大量的用户交互数据,用户隐式反馈数据的采集成本较高。
- 改进方向:引入时间因素、上下文因素、多目标优化等,提高推荐精度和多样性。