神经符号AI:结合符号推理与深度学习
关键词:神经符号AI,符号推理,深度学习,知识图谱,混合编程,高级认知AI
1. 背景介绍
1.1 问题由来
近年来,随着深度学习技术的快速发展,人工智能(AI)系统在图像识别、语音识别、自然语言处理等领域取得了显著进展。然而,这些AI系统在逻辑推理、因果关系判断、常识推理等方面仍然存在欠缺。因此,如何将符号逻辑推理与深度学习相结合,构建具有高级认知能力的神经符号AI(Neuro-Symbolic AI),成为当前AI研究的前沿热点。
1.2 问题核心关键点
神经符号AI结合了符号逻辑推理和深度学习的优势,在保持深度学习强大的数据表示和模式识别能力的同时,借助符号逻辑推理的演绎、归纳、推理能力,构建更全面、准确的智能系统。核心技术包括:
- 知识表示与推理:使用符号逻辑表达知识,结合规则引擎和推理算法进行逻辑推导。
- 混合编程:将符号逻辑和深度学习模块有机结合,共享中间表示,实现高级认知推理。
- 神经网络模块:采用深度学习模块处理高层次抽象数据ÿ