深度神经符号计算:AI融合神经网络与符号推理
1. 背景介绍
1.1 人工智能的两大范式
人工智能(AI)领域一直存在着两大主导范式:神经网络和符号推理。神经网络擅长从大量数据中学习模式和规律,但缺乏显式的知识表示和推理能力。而符号推理系统则依赖于人工构建的规则和知识库,能够进行逻辑推理,但缺乏从数据中学习的能力。
1.2 融合神经网络与符号推理的必要性
尽管神经网络和符号推理各有所长,但它们也存在着明显的局限性。神经网络缺乏可解释性和可控性,而符号推理系统则受限于知识库的覆盖范围和构建成本。因此,将这两种范式融合起来,结合它们的优势,是实现通用人工智能的关键一步。
1.3 深度神经符号计算的兴起
近年来,深度神经符号计算(Deep Neuro-Symbolic Computation)作为一种新兴的人工智能范式逐渐受到关注。它旨在将深度学习的强大模式识别能力与符号推理的知识表示和推理能力相结合,从而克服单一范式的局限性,实现更强大、更可解释、更可控的人工智能系统。
2. 核心概念与联系
2.1 神经网络
神经网络是一种受生物神经系统启发的计算模型,由大量互连的节点(神经元)组成。它能够从大量数据中学习模式和规律,并对新的输入数据进行预测或分类。常见的神经网络模型包括前馈神经网络、卷积神经网络和递归神经网络等。