win 7 连接打印机_win7连接打印机

9、使用“从磁盘安装”的点击后在弹出的对话框中选择“浏览”(图中方框所示)。
在这里插入图片描述
10、然后从磁盘中找到打印机的驱动选中(图中1),然后点击打开(图中2)。
在这里插入图片描述
11、然后会返回之前的界面,在界面中点击“下一步”(图中方框所示)。
在这里插入图片描述12、然后输入打印机的名称(图中1),书好后点击“下一步”(图中2)。
在这里插入图片描述
13、安装完成,会有一个共享设置。如果需要共享就按下一步设置,不需要共享给其他人使用的直接按取消就可以完成安装。
在这里插入图片描述
14、可以通过打印测试纸来测试连接的打印机是否正常。如果失败可以检查打印机电源是否打开,与主机连接的线路是否连接好,打印机的驱动安装有没有安装错型号等。
在这里插入图片描述
另外,如果你还有更多其它电脑问题不懂的话,可以打开“小白维修”App查找问题,里面还有更多电脑问题的详细解决方案哦。好啦,以上就是今天分享的所有内容,不知道对你有没有帮助呢?如果你觉得这篇文章有用的话,别忘了点个赞关注我,每天与你分享更多电脑问题小知识哦。

扩展

详细讲解电脑和打印机连接方法

第一:首先把打印机的电源插到电源插座上,然后打开打印机的开关,然后把USB数据线把电脑与打印机连接好。
在这里插入图片描述
第二:现在再把电脑上的打印机所相符的驱动安装,安装时只需用鼠标单击软件包,可以根据提示进行安装,安装完成之后,请往下看详细。
在这里插入图片描述
第三:安装好后,依次打开“我的电脑”–“控制面板”–“硬件和声音”的选项,然后点击“添加本地打印机”根据打印机的端口类型来进行选择,最后会在列表中出现相关的打印机品牌型号,可以根据提示来进行安装即可,如图。
在这里插入图片描述
在这里插入图片描述
没有安装打印机驱动,报错了
在这里插入图片描述
搜索 :HP打印机驱动
在这里插入图片描述
输入\192.167.3.188\HP LaserJet M1005 (副本 1)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
通过浏览打印机即网上邻居添加
在这里插入图片描述
选择CYYUN-QIANTAI 这台打印机
在这里插入图片描述
提示需要输入用户密码,即为连接打印机的电脑的登陆名称和密码

user:qwq_DHF

pwd:dhf
在这里插入图片描述
双击完,即添加完毕打印机。
在这里插入图片描述在这里插入图片描述
第四 :安装好之后会显示有打印测试,在打印文件时,可以从打印预览的效果,查看文字整体的版式是否合适,预览之后,选择与纸张相符的尺寸,纸张效果以及打印机型号,开始打印试着效果就可以了,如果遇到打错的时候,可以选择暂停或者取消打印。
在这里插入图片描述
在这里插入图片描述
好了,大家按照以上的步骤操作即可。

扩展

在这里插入图片描述
在新窗口,选择“添加本地打印机”
在这里插入图片描述
请在添加打印机向导中,选择“创建新端口”, 从下拉框中选择“Standard TCP/IP Port” ,单击“下一步”。
在这里插入图片描述
在“打印机名或 IP 地址” 中输入网络内复合机的 IP 地址,端口名将自动生成,单击“下一步”,公司打印机 ip 为 192.168.0.180。

在这里插入图片描述
系统会检测 TCP/IP 端口,稍后转变新界面,在“设备类型”中选择“标准”直接单击“下一步”
在这里插入图片描述

从 http://192.168.188.104/software/Driver/ 下载对应系统的驱动,解压
在这里插入图片描述
选择“从硬盘安装驱动”
在这里插入图片描述
选择刚才驱动解压后的驱动文件夹,打开后选中.inf 格式的文件,单击“打开”
在这里插入图片描述
自动安装驱动
在这里插入图片描述
因为我之前在本机已经安装过驱动,所以会出现这一步。如果第二次安装,为了避免驱动异常,请选择“替换当前的驱动程序”。
在这里插入图片描述
打印机名可自行更改
在这里插入图片描述
不共享打印机,下一步

打印机添加完毕,可用“打印测试页”测试是否成功
在这里插入图片描述

参考链接 :

手把手教你,电脑如何连接打印机,原来这么简单(图文好详细)

https://baijiahao.baidu.com/s?id=1649528532543935065&wfr=spider&for=pc

详细讲解电脑和打印机连接方法,工作中用的到!

https://mp.weixin.qq.com/s/DAiYRKOGVRNzC_5aL9_sJQ

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值