基于MATLAB的鱼类识别检测系统GUI设计
这是一个结合深度学习和图像处理技术的高效工具,能够准确地识别各种鱼类。系统提供了简单的用户界面,使用户能够轻松上传图像、提取特征并进行鱼类识别。它适用于科研、教育、渔业管理以及水产养殖等领域,能够帮助用户快速识别并获取鱼类信息。
主要功能:
图像上传与选择: 用户可以通过选择本地存储的图像文件或实时摄像头捕捉图像来进行鱼类识别。支持常见图像格式(如JPEG、PNG、BMP等)。系统允许批量上传,适合需要处理大量图像的用户。
图像预处理: 系统会对输入的图像进行自动预处理,包括灰度化、去噪、对比度增强等处理步骤。这些步骤帮助提升图像的质量,并为后续的特征提取与识别提供更清晰的数据输入。
鱼类特征提取: 系统利用计算机视觉技术对图像进行特征提取,包括鱼类的颜色、形状、鳞片纹理、鱼鳍的轮廓等。通过提取这些关键特征,系统可以为鱼类识别提供更加准确的信息。
鱼类识别与分类: 基于预训练的深度学习模型(VGG19),系统可以根据提取的特征对鱼类进行分类识别。识别结果将显示图像中鱼类的名称和相应的信息。
鱼类信息展示: 识别后,系统显示鱼类的种类,用户可以通过该信息进一步了解每种鱼类的特点。
以下是一个基于MATLAB的鱼类识别检测系统的GUI设计代码,结合了深度学习(VGG19)和图像处理技术。该系统具有简单的用户界面,支持图像上传、预处理、特征提取和鱼类识别功能。
主要功能实现:
- 图像上传与选择:支持本地图像文件上传。
- 图像预处理:包括灰度化、去噪、对比度增强等。
- 鱼类特征提取与识别:使用预训练的VGG19模型进行分类。
- 鱼类信息展示:显示识别结果及鱼类相关信息。
MATLAB GUI代码
function FishRecognitionGUI
% 创建主窗口
fig = uifigure('Name', '鱼类识别检测系统', ...
'Position', [100, 100, 800, 600], ...
'MenuBar', 'none', 'ToolBar', 'none');
% 标题
uilabel(fig, 'Text', '鱼类识别检测系统', ...
'FontWeight', 'bold', 'FontSize', 16, ...
'Position', [300, 550, 200, 30]);
% 图像显示区域
imgAxes = uiaxes(fig, 'Position', [50, 300, 300, 200]);
title(imgAxes, '输入图像');
resultAxes = uiaxes(fig, 'Position', [450, 300, 300, 200]);
title(resultAxes, '识别结果');
% 按钮:上传图像
uploadButton = uibutton(fig, 'push', 'Text', '上传图像', ...
'Position', [50, 250, 100, 30], ...
'ButtonPushedFcn', @(btn, event) uploadImage());
% 按钮:开始识别
recognizeButton = uibutton(fig, 'push', 'Text', '开始识别', ...
'Position', [200, 250, 100, 30], ...
'ButtonPushedFcn', @(btn, event) startRecognition());
% 文本框:显示识别结果
resultText = uitextarea(fig, 'Position', [50, 50, 700, 150], ...
'Editable', false);
% 全局变量
imageFile = []; % 存储上传的图像路径
% 上传图像函数
function uploadImage()
% 打开文件选择对话框
[file, path] = uigetfile({'*.jpg;*.png;*.bmp', '图像文件 (*.jpg, *.png, *.bmp)'}, ...
'选择图像文件');
if isequal(file, 0)
return; % 用户取消选择
end
% 读取并显示图像
imageFile = fullfile(path, file);
img = imread(imageFile);
imshow(img, 'Parent', imgAxes);
title(imgAxes, '输入图像');
end
% 开始识别函数
function startRecognition()
if isempty(imageFile)
uialert(fig, '请先上传图像!', '错误');
return;
end
% 读取图像
img = imread(imageFile);
% 图像预处理
preprocessedImg = preprocessImage(img);
imshow(preprocessedImg, 'Parent', resultAxes);
title(resultAxes, '预处理后的图像');
% 使用VGG19模型进行鱼类识别
fishClass = recognizeFish(preprocessedImg);
% 显示识别结果
resultText.Value = sprintf('识别结果:\n鱼类名称:%s\n更多信息:待补充', fishClass);
end
% 图像预处理函数
function processedImg = preprocessImage(img)
% 转为灰度图
grayImg = rgb2gray(img);
% 去噪
denoisedImg = imgaussfilt(grayImg, 2);
% 对比度增强
enhancedImg = adapthisteq(denoisedImg);
% 返回预处理后的图像
processedImg = enhancedImg;
end
% 鱼类识别函数
function fishClass = recognizeFish(img)
% 加载预训练的VGG19模型
net = vgg19;
% 调整图像大小以适应模型输入
inputSize = net.Layers(1).InputSize;
resizedImg = imresize(img, [inputSize(1), inputSize(2)]);
% 将图像转换为网络输入格式
imgForNet = single(resizedImg);
imgForNet = imgForNet ./ 255; % 归一化
imgForNet = reshape(imgForNet, [inputSize(1), inputSize(2), 1, 1]);
% 进行预测
predictScores = predict(net, imgForNet);
[~, predictedClass] = max(predictScores);
% 获取类别标签
classLabels = net.Layers(end).ClassNames;
fishClass = classLabels{predictedClass};
end
end
代码说明
-
GUI界面设计:
- 使用
uifigure
创建主窗口。 - 添加按钮、文本框和图像显示区域。
- 用户可以通过按钮上传图像并启动识别流程。
- 使用
-
图像预处理:
- 包括灰度化、去噪和对比度增强。
- 使用
rgb2gray
、imgaussfilt
和adapthisteq
等函数实现。
-
鱼类识别:
- 使用MATLAB内置的VGG19模型进行分类。
- 将输入图像调整为模型所需的尺寸,并归一化。
- 输出识别结果并显示在界面上。
-
友好提示:
- 如果用户未上传图像,会弹出错误提示。
- 识别结果显示详细的鱼类名称和相关信息。
注意事项
-
预训练模型:
- 代码中使用的是MATLAB内置的VGG19模型。如果需要针对特定鱼类数据集进行训练,可以替换为自定义训练的模型。
-
依赖项:
- 确保安装了MATLAB的Deep Learning Toolbox和Image Processing Toolbox。
-
扩展功能:
- 可以添加批量上传功能。
- 提供更多鱼类信息(如栖息地、习性等)。
- 支持实时摄像头捕捉图像。
为了实现一个基于MATLAB的海洋鱼类识别检测系统GUI,我们可以使用MATLAB的App Designer来创建一个用户友好的界面。以下是一个详细的代码示例,包括图像上传、预处理、特征提取和鱼类识别功能。
MATLAB App Designer Code
-
启动MATLAB App Designer:
- 打开MATLAB。
- 在命令窗口中输入
appdesigner
并按回车键。
-
设计界面:
- 添加两个
Axes
用于显示原始图像和处理后的图像。 - 添加三个按钮:
选择图像
、提取特征
和识别鱼类
。 - 添加一个
Text Area
用于显示识别结果。
- 添加两个
-
编写代码:
class FishRecognitionApp < matlab.apps.AppBase
% Properties that correspond to app components
properties (Access = public)
UIFigure matlab.ui.Figure
OriginalImageAxes matlab.ui.control.Axes
ProcessedImageAxes matlab.ui.control.Axes
ChooseImageButton matlab.ui.control.Button
ExtractFeatureButton matlab.ui.control.Button
RecognizeFishButton matlab.ui.control.Button
ResultTextArea matlab.ui.control.TextArea
end
% Callbacks that handle component events
methods (Access = private)
% Button pushed function: ChooseImageButton
function ChooseImageButtonPushed(app, event)
[file, path] = uigetfile({'*.jpg;*.jpeg;*.png;*.bmp', 'Image Files (*.jpg, *.jpeg, *.png, *.bmp)'}, ...
'Select an Image File');
if isequal(file, 0)
return;
end
app.imageFile = fullfile(path, file);
img = imread(app.imageFile);
imshow(img, 'Parent', app.OriginalImageAxes);
end
% Button pushed function: ExtractFeatureButton
function ExtractFeatureButtonPushed(app, event)
if isempty(app.imageFile)
uialert(app.UIFigure, 'Please select an image first!', 'Error');
return;
end
img = imread(app.imageFile);
preprocessedImg = preprocessImage(img);
imshow(preprocessedImg, 'Parent', app.ProcessedImageAxes);
end
% Button pushed function: RecognizeFishButton
function RecognizeFishButtonPushed(app, event)
if isempty(app.imageFile)
uialert(app.UIFigure, 'Please select an image first!', 'Error');
return;
end
img = imread(app.imageFile);
preprocessedImg = preprocessImage(img);
fishClass = recognizeFish(preprocessedImg);
app.ResultTextArea.Value = sprintf('识别结果:\n鱼类名称:%s\n更多信息:待补充', fishClass);
end
% Preprocess image function
function processedImg = preprocessImage(img)
% Convert to grayscale
grayImg = rgb2gray(img);
% Denoise
denoisedImg = imgaussfilt(grayImg, 2);
% Enhance contrast
enhancedImg = adapthisteq(denoisedImg);
% Return preprocessed image
processedImg = enhancedImg;
end
% Recognize fish function
function fishClass = recognizeFish(img)
% Load pre-trained VGG19 model
net = vgg19;
% Adjust image size to fit model input
inputSize = net.Layers(1).InputSize;
resizedImg = imresize(img, [inputSize(1), inputSize(2)]);
% Convert image to network input format
imgForNet = single(resizedImg);
imgForNet = imgForNet ./ 255; % Normalize
imgForNet = reshape(imgForNet, [inputSize(1), inputSize(2), 1, 1]);
% Predict
predictScores = predict(net, imgForNet);
[~, predictedClass] = max(predictScores);
% Get class label
classLabels = net.Layers(end).ClassNames;
fishClass = classLabels{predictedClass};
end
end
% App setup and initialization
methods (Access = private)
% Create UIFigure and components
function createComponents(app)
% Create UIFigure
app.UIFigure = uifigure;
app.UIFigure.Position = [100 100 800 600];
app.UIFigure.Name = '海洋鱼类识别检测系统';
% Create OriginalImageAxes
app.OriginalImageAxes = uiaxes(app.UIFigure);
app.OriginalImageAxes.Position = [50 300 300 200];
title(app.OriginalImageAxes, '原始图像');
% Create ProcessedImageAxes
app.ProcessedImageAxes = uiaxes(app.UIFigure);
app.ProcessedImageAxes.Position = [450 300 300 200];
title(app.ProcessedImageAxes, '处理图像');
% Create ChooseImageButton
app.ChooseImageButton = uibutton(app.UIFigure, 'push');
app.ChooseImageButton.ButtonPushedFcn = @(btn,event) app.ChooseImageButtonPushed(app,event);
app.ChooseImageButton.Position = [50 250 100 30];
app.ChooseImageButton.Text = '选择图像';
% Create ExtractFeatureButton
app.ExtractFeatureButton = uibutton(app.UIFigure, 'push');
app.ExtractFeatureButton.ButtonPushedFcn = @(btn,event) app.ExtractFeatureButtonPushed(app,event);
app.ExtractFeatureButton.Position = [200 250 100 30];
app.ExtractFeatureButton.Text = '提取特征';
% Create RecognizeFishButton
app.RecognizeFishButton = uibutton(app.UIFigure, 'push');
app.RecognizeFishButton.ButtonPushedFcn = @(btn,event) app.RecognizeFishButtonPushed(app,event);
app.RecognizeFishButton.Position = [350 250 100 30];
app.RecognizeFishButton.Text = '识别鱼类';
% Create ResultTextArea
app.ResultTextArea = uitextarea(app.UIFigure);
app.ResultTextArea.Position = [50 50 700 150];
app.ResultTextArea.Editable = false;
app.ResultTextArea.Value = '识别结果:';
end
end
% App creation function
methods (Access = public)
% Create and show the App UI
function createUI(app)
createComponents(app);
open(app.UIFigure);
end
% Execute when the App is launched
function startupFcn(app)
createUI(app);
end
end
end
说明
-
选择图像:
- 用户点击“选择图像”按钮后,会弹出文件选择对话框,选择图片后在“原始图像”区域显示。
-
提取特征:
- 用户点击“提取特征”按钮后,对选定的图像进行预处理(灰度化、去噪、对比度增强),并在“处理图像”区域显示。
-
识别鱼类:
- 用户点击“识别鱼类”按钮后,使用预训练的VGG19模型进行分类,并在文本区域显示识别结果。
运行代码
- 将上述代码保存为
.m
文件,例如FishRecognitionApp.m
。 - 在MATLAB中运行该文件。
- 界面将自动打开,用户可以按照提示操作。