基于YOLOv8深度学习的害虫检测系统

基于YOLOv8深度学习的害虫检测系统

内含3899张害虫数据集
包括[‘粘虫’, ‘小地老虎’, ‘蛴螬’, ‘蝼蛄’, ‘桃蛀螟’, ‘红蜘蛛’],6类

也可自行替换模型,使用该界面做其他检测

在这里插入图片描述
构建一个基于YOLOv8的害虫检测系统可以帮助农业领域实现精准的病虫害管理,提高作物产量和质量。以下是一个完整的指南,包括环境配置、模型训练(或使用预训练模型)、以及如何创建一个简单的用户界面来展示害虫检测结果。

环境准备

首先,确保你的环境中安装了必要的库:

pip install ultralytics opencv-python pyqt5 numpy matplotlib

数据集与模型

对于特定于害虫的数据集,你可能需要自己收集并标注数据,或者寻找公开可用的相关数据集。假设你已经有了适用于YOLOv8格式的数据集,下面将介绍如何利用YOLOv8进行训练和预测。

模型训练(可选)

如果你已经有了一定规模的标记数据集,你可以使用YOLOv8进行训练。以下是基本命令示例:

yolo task=detect mode=train model=yolov8n.pt data=path/to/your/pests.yaml epochs=100 imgsz=640

请确保pests.yaml文件正确配置了训练和验证数据路径、类别数量及名称。例如:

train: ./images/train/
val: ./images/val/

nc: 3 # 假设有3种害虫
names: ['Aphid', 'Beetle', 'Moth']

创建GUI应用程序

接下来,我们将创建一个简单的PyQt5 GUI应用,它允许用户上传图片,并使用YOLOv8模型检测图片中的害虫。

示例代码:GUI 应用程序主窗口
import sys
import cv2
from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel, QPushButton, QFileDialog, QVBoxLayout, QWidget
from PyQt5.QtGui import QPixmap, QImage
from PyQt5.QtCore import Qt
from ultralytics import YOLO


class PestDetectionApp(QMainWindow):
    def __init__(self):
        super().__init__()
        self.setWindowTitle("害虫检测系统 - YOLOv8")
        self.setGeometry(100, 100, 800, 600)

        # 加载YOLOv8模型
        self.model = YOLO('best.pt')  # 替换为你的模型路径

        self.initUI()

    def initUI(self):
        layout = QVBoxLayout()

        self.image_label = QLabel(self)
        self.image_label.setAlignment(Qt.AlignCenter)
        self.image_label.setStyleSheet("border: 1px solid black;")
        self.image_label.setFixedSize(760, 500)
        layout.addWidget(self.image_label)

        upload_button = QPushButton("上传图片", self)
        upload_button.clicked.connect(self.upload_image)
        layout.addWidget(upload_button)

        self.setLayout(layout)

        container = QWidget()
        container.setLayout(layout)
        self.setCentralWidget(container)

    def upload_image(self):
        file_name, _ = QFileDialog.getOpenFileName(self, "选择图片", "", "Image Files (*.png *.jpg *.jpeg)")
        if file_name:
            self.detect_and_show(file_name)

    def detect_and_show(self, image_path):
        results = self.model(image_path)  # 进行预测
        annotated_frame = results[0].plot()  # 获取绘制了边界框的图像

        # 将图像转换为QPixmap显示
        rgb_image = cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB)
        h, w, ch = rgb_image.shape
        bytes_per_line = ch * w
        qt_image = QImage(rgb_image.data, w, h, bytes_per_line, QImage.Format_RGB888)
        pixmap = QPixmap.fromImage(qt_image).scaled(
            self.image_label.width(), self.image_label.height(), Qt.KeepAspectRatio
        )
        self.image_label.setPixmap(pixmap)


if __name__ == "__main__":
    app = QApplication(sys.argv)
    window = PestDetectionApp()
    window.show()
    sys.exit(app.exec_())

实时视频检测(可选功能)

如果你想实现从摄像头获取实时视频流并进行害虫检测,可以在上述代码中添加如下方法,并在界面上增加相应的按钮来启动和停止视频捕捉。

def start_camera(self):
    cap = cv2.VideoCapture(0)
    while True:
        ret, frame = cap.read()
        if not ret:
            break

        results = self.model(frame)
        annotated_frame = results[0].plot()

        cv2.imshow("Real-time Detection", annotated_frame)

        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    cap.release()
    cv2.destroyAllWindows()

然后,在GUI初始化部分添加一个按钮来触发这个方法:

camera_button = QPushButton("开启摄像头检测", self)
camera_button.clicked.connect(self.start_camera)
layout.addWidget(camera_button)

总结

通过上述步骤,我们创建了一个基本的害虫检测系统,它可以对上传的图片进行分析,并使用YOLOv8模型检测其中的害虫。此外,还提供了扩展到实时视频检测的功能。根据具体需求,你可以进一步优化和扩展这个系统,例如加入更多种类的害虫识别、提高检测精度、优化性能等。这不仅有助于提高农业生产效率,还能促进农业可持续发展。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值