【AI平台】n8n入门2:第一个工作流,调用本地大模型

前言

n8n是一款开源的低代码自动化工具,专注于AI工作流构建,支持灵活的自定义与集成。

就是可以把大模型和其他工具联合起来,这就厉害了。而且,免费功能又强大,目前很火,来研究一下。

准备

n8n的安装见前面文档:

【AI平台】n8n入门1:详细介绍n8n的多种安装方式(含docer图形化安装n8n)-CSDN博客

n8n是英文版(没找到中文切换到地方),我给浏览器安装了翻译插件,需要的可以参考:

【实用】chrome浏览器安装翻译插件-CSDN博客

 ollama的安装,和部署deepseek模型,见:

AI入门:AI模型管家婆ollama的安装和使用-CSDN博客

AI入门2:本地AI部署,用ollama部署deepseek(私有化部署)-CSDN博客

正经开始

功能说明

n8n调用ollama的数据模型,进行对话。

创建

进入n8n软件:http://localhost:5678/,创建工作流:

改名,我这里取名“firstExample”,然后点击“添加第一步”,触发选择“在聊天信息时”:

 然后,点击“返回画布”,回到主界面:

在主界面,点击“+”,选择“人工智能”:

 选择“基础LLM链”:

 选择“Connected Chat Trigger Node”【比选,不然后面选不到ollama的模型】,然后返回,

如图点击“+”,选择“Ollama 聊天模型”:

配置凭证:

如果你的ollama是在11434端口运行,你填写:http://localhost:11434/,那么保存后,提示出错:

http://host.docker.internal:11434/

 (查了一下,配置n8n时使用http://host.docker.internal:11434地址的原因,是为了让n8n能够访问运行在Docker容器中的Ollama服务,在本地host中,docker安装时,把host.docker.internal及对应的本地ip,写到了本机的host文件里,大家可以查一下自己的host文件。‌)

保存,链接成功后,关闭窗口,继续选择模型(这些是本地ollama上安装的模型),选择一个你想用的:

注:查询本地ollama安装了哪些大模型,在dos窗口用命令:ollama list

 返回主界面:

测试 

点击“打开聊天”,问个问题:

遗留问题

虽然看着成果了,但后台有docker报错了:

2025-04-25 11:22:26 Error in handler N8nLlmTracing, handleLLMEnd: TypeError: fetch failed

界面如下:

查看了几个地方,信息记录一下:

OLLAMA_HOST应设置为0.0.0.0:11434,如果写错了,会提示错误

 错误界面:

提示找不到的地址,不过这个不是本机IP,也不是host里面配的地址,目前还没找到:

补充:

终于找到这个地址了,在docker容器里,默认设置了网络模式,是网桥的方式,内置了host.docker.internal的ip是192.168.65.254(虽然还没搞明白,docker在哪里设置的),

n8n容器内容是可以访问到的:

 2、OLLAMA_HOST、本机host文件都改正了,http://host.docker.internal:11434/

http://localhost:11434/,都访问正常,服务器端错题提示“Error in handler N8nLlmTracing, handleLLMEnd: TypeError: fetch failed”也没有解决:

结尾 

 走过路过的朋友,你们遇到这个问题了没?如果能解决,给指导一下,🙇‍♀️🙇‍♀️🙇‍♀️

虽然总有解决不了的问题,但却不能阻挡我们前进的脚步👣 👣 👣 

<think>嗯,用户想知道Dify和n8n这两个工作流自动化平台之间的区别和联系。首先,我需要明确两者的核心功能和定位。根据引用资料,Dify主要是一个AI应用开发平台,强调通过大模型驱动,比如创建Agent和工作流,支持并行处理、知识库集成等[^1][^2][^3]。而n8n我之前了解的更多是一个通用的自动化工具,用于连接不同的应用和服务,类似于Zapier,但开源。 接下来要比较它们的定位差异。Dify专注于AI集成,而n8n更侧重于通用自动化任务。用户可能需要了解这两者在目标用户上的不同,比如开发者或业务人员。然后核心技术部分,Dify依赖大模型,需要API密钥,成本可能较高,而n8n基于Node.js,使用REST API连接服务,技术栈不同。 功能特点方面,Dify的工作流有并行处理和智能体交互,而n8n提供可视化编辑和丰富的应用集成。应用场景的话,Dify适合需要AI处理的场景,比如客服机器人,n8n适合数据同步或通知自动化。开源和成本方面,Dify虽然开源但需要自己承担模型费用[^3],n8n则是开源但企业版收费。 还需要考虑用户可能的深层需求,比如是否需要AI功能,预算限制,技术能力等。用户可能想知道在什么情况下选择哪一个平台更合适,或者两者能否结合使用。最后要确保回答结构清晰,引用正确的资料,比如Dify的并行处理和成本问题[^2],以及n8n的特点。</think>### Dify 与 n8n 工作流自动化平台对比 #### 1. **核心定位差异** - **Dify**: 是专注于**AI原生应用开发**的低代码平台,强调通过大模型(如GPT)驱动复杂业务流程,例如智能体(Agent)交互、知识库调用和多步骤决策。其工作流设计目标是**AI任务编排**,例如结合模型推理、数据处理和外部工具调用。 ```python # 示例:Dify 工作流可能包含模型调用步骤 def generate_response(prompt): model = load_ai_model() return model.predict(prompt) ``` - **n8n**: 是**通用型工作流自动化工具**,主要用于连接SaaS服务(如Slack、Google Sheets)和本地系统,核心功能是**API集成与数据流转**,例如定时同步数据、触发邮件通知等。 #### 2. **技术实现对比** | 特性 | Dify | n8n | |--------------------|-----------------------------------|------------------------------| | 核心技术 | 大模型驱动(需API密钥) | Node.js + REST API | | 工作流复杂度 | 支持并行分支、条件嵌套 | 线性流程为主 | | 自定义能力 | 可嵌入代码到网页应用[^3] | 通过JavaScript片段扩展 | | 成本模型 | 需支付大模型调用费用 | 开源版免费,企业版付费 | #### 3. **典型应用场景** - **Dify 适用场景**: - 构建AI客服系统(结合知识库与多轮对话) - 生成个性化内容(如营销文案、代码片段) - 需要模型推理的复杂决策流程 - **n8n 适用场景**: - 跨平台数据同步(如CRM到数据库) - 自动化通知(如监控报警触发Slack消息) - 简单ETL数据处理 #### 4. **关键差异总结** - **AI集成深度**: Dify 原生支持大模型调用且深度绑定[^1],n8n 需通过插件实现基础AI功能 - **部署成本**: Dify 的模型调用成本可能较高,n8n 开源版可零成本部署 - **用户体验**: Dify 提供面向AI开发者的专用组件,n8n 更适合通用自动化需求
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

正经教主

有钱捧个钱场,没钱捧个人场👌

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值