基于Matlab代码,用于模拟掺镱光纤激光器仿真锁定脉冲过程,包括时间域和频域分析。

用于模拟掺镱光纤激光器仿真锁定脉冲过程,包括时间域和频域分析。
在这里插入图片描述

模拟掺镱光纤激光器(Ytterbium-doped fiber laser, YDFL)的脉冲锁定过程涉及复杂的非线性光学和光子学原理。下面给出一个简化的MATLAB代码示例,用于模拟一个基于非线性偏振旋转(Nonlinear Polarization Rotation, NPR)机制的锁模掺镱光纤激光器的时间域和频域特性。请注意,实际的仿真可能需要更详细的物理模型和参数调整。

MATLAB代码示例

% 参数设置
lambda = 1064e-9; % 波长 (m)
c = 299792458; % 光速 (m/s)
f = c / lambda; % 中心频率 (Hz)
T0 = 1e-12; % 初始脉冲宽度 (s)
P0 = 1; % 峰值功率 (W)
NPTS = 2^10; % 时间点数
Tspan = 10 * T0; % 时间窗口大小 (s)

% 时间轴
t = linspace(-Tspan/2, Tspan/2, NPTS);
dt = t(2) - t(1);

% 初始脉冲形状 (高斯脉冲)
E_t = sqrt(P0) * exp(-(t.^2)/(2*T0^2));

% 频域变换
E_f = fftshift(fft(E_t));
f_axis = fftshift(fftfreq(NPTS, dt));

% 线性传播效应 (色散和损耗)
beta2 = -20; % 色散系数 (ps^2/km)
alpha = 0.2; % 损耗系数 (dB/km)
L = 10; % 光纤长度 (km)

dispersion_operator = exp((-1i*beta2/2*(2*pi*f_axis).^2*L)/1e3); % 色散操作符
loss_operator = exp(-alpha/2*L); % 损耗操作符

% 应用线性效应
E_f_propagated = E_f .* dispersion_operator .* loss_operator;

% 返回时域
E_t_propagated = ifft(ifftshift(E_f_propagated));

% 绘制结果
figure;
subplot(2,1,1);
plot(t*1e12, abs(E_t).^2, 'b', 'LineWidth', 1.5); hold on;
plot(t*1e12, abs(E_t_propagated).^2, 'r--', 'LineWidth', 1.5);
xlabel('Time (ps)');
ylabel('Intensity (a.u.)');
legend('Initial Pulse', 'After Propagation');

subplot(2,1,2);
plot(f_axis*1e-12, abs(E_f).^2, 'b', 'LineWidth', 1.5); hold on;
plot(f_axis*1e-12, abs(E_f_propagated).^2, 'r--', 'LineWidth', 1.5);
xlabel('Frequency (THz)');
ylabel('Spectral Intensity (a.u.)');
legend('Initial Spectrum', 'After Propagation');

说明

  1. 时间域分析: 初始脉冲采用高斯分布形式,通过快速傅里叶变换(FFT)转换到频域。
  2. 频域分析: 在频域中应用色散和损耗效应,然后逆向快速傅里叶变换(IFFT)返回时域,观察脉冲传播后的变化。
  3. 图形展示: 分别展示了初始和经过传播后的脉冲在时间和频率上的强度分布。

注意,这个例子是高度简化的,并没有考虑诸如自相位调制(SPM)、交叉相位调制(XPM)、增益饱和等复杂因素。对于更精确的模拟,您可能需要使用专业的仿真软件或更加细致的数学模型来涵盖这些效应。
在这里插入图片描述
要生成类似于您提供的图像中的模式锁定脉冲序列(Mode-locked pulse train),我们可以使用MATLAB来模拟和绘制这样的脉冲序列。以下是一个示例代码,展示了如何生成和绘制模式锁定脉冲的时间域形状。

MATLAB代码

% 参数设置
time_span = 2; % 时间窗口 (ns)
num_pulses = 15; % 脉冲数量
pulse_width = 0.05; % 单个脉冲宽度 (ns)
peak_power = 1; % 峰值功率 (归一化)

% 创建时间轴
t = linspace(-time_span/2, time_span/2, 1000);

% 初始化脉冲序列
pulse_train = zeros(size(t));

% 生成脉冲序列
for i = 1:num_pulses
    pulse_center = (i - 1) * (time_span / num_pulses);
    pulse_train = pulse_train + peak_power * exp(-(t - pulse_center).^2 / (2 * pulse_width^2));
end

% 归一化脉冲序列
pulse_train = pulse_train / max(pulse_train);

% 绘制脉冲序列
figure;
plot(t, pulse_train, 'r');
xlabel('Time (ns)');
ylabel('Normalized Intensity');
title('Temporal Shape: Mode locked');
grid on;

解释代码

  1. 参数设置:

    • time_span: 时间窗口的总长度。
    • num_pulses: 模式锁定脉冲的数量。
    • pulse_width: 单个脉冲的宽度。
    • peak_power: 脉冲的峰值功率(归一化)。
  2. 创建时间轴:

    t = linspace(-time_span/2, time_span/2, 1000);
    
  3. 初始化脉冲序列:

    pulse_train = zeros(size(t));
    
  4. 生成脉冲序列:

    for i = 1:num_pulses
        pulse_center = (i - 1) * (time_span / num_pulses);
        pulse_train = pulse_train + peak_power * exp(-(t - pulse_center).^2 / (2 * pulse_width^2));
    end
    
  5. 归一化脉冲序列:

    pulse_train = pulse_train / max(pulse_train);
    
  6. 绘制脉冲序列:

    figure;
    plot(t, pulse_train, 'r');
    xlabel('Time (ns)');
    ylabel('Normalized Intensity');
    title('Temporal Shape: Mode locked');
    grid on;
    

运行代码

将上述代码复制到MATLAB中并运行,您将看到一个包含模式锁定脉冲的时间域形状图。您可以根据需要调整参数以获得不同的效果。

示例输出

该代码将生成一个类似于您提供的图像中的模式锁定脉冲序列。每个脉冲在时间轴上均匀分布,并且具有高斯形状。

在这里插入图片描述
要生成类似于您提供的图像中的模式未锁定(Mode Unlocked)脉冲序列的时间域形状,我们可以使用MATLAB来模拟和绘制这样的脉冲序列。以下是一个示例代码,展示了如何生成和绘制模式未锁定的脉冲序列。

MATLAB代码

% 参数设置
time_span = 40; % 时间窗口 (ns)
num_samples = 10000; % 样本点数
noise_level = 0.2; % 噪声水平

% 创建时间轴
t = linspace(-time_span/2, time_span/2, num_samples);

% 初始化脉冲序列
pulse_train = zeros(size(t));

% 添加随机噪声
pulse_train = pulse_train + noise_level * randn(size(t));

% 绘制脉冲序列
figure;
plot(t, pulse_train);
xlabel('Time (ns)');
ylabel('Normalized Intensity');
title('Temporal Shape: Mode Unlocked');
grid on;

解释代码

  1. 参数设置:

    • time_span: 时间窗口的总长度。
    • num_samples: 样本点数。
    • noise_level: 噪声水平。
  2. 创建时间轴:

    t = linspace(-time_span/2, time_span/2, num_samples);
    
  3. 初始化脉冲序列:

    pulse_train = zeros(size(t));
    
  4. 添加随机噪声:

    pulse_train = pulse_train + noise_level * randn(size(t));
    
  5. 绘制脉冲序列:

    figure;
    plot(t, pulse_train);
    xlabel('Time (ns)');
    ylabel('Normalized Intensity');
    title('Temporal Shape: Mode Unlocked');
    grid on;
    

运行代码

将上述代码复制到MATLAB中并运行,您将看到一个包含模式未锁定脉冲的时间域形状图。每个脉冲在时间轴上随机分布,并且具有随机噪声特性。

示例输出

该代码将生成一个类似于您提供的图像中的模式未锁定脉冲序列。您可以根据需要调整参数以获得不同的效果。

如果您希望进一步细化模型,可以考虑添加更复杂的噪声模型或引入其他物理效应。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值